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Over the last half dozen years, there’s been a tremendous 
amount of progress in gauged linear sigma models (GLSMs).
A few of my favorite examples:

Far too much to cover in one talk!  I’ll focus on just part….

• nonpert’ realizations of geometry (Pfaffians, double covers)
(Hori-Tong ’06, Caldararu et al ’07,…)

• perturbative GLSM’s for Pfaffians (Hori ’11, Jockers et al ’12,…)

• non-birational GLSM phases - physical realization of 
homological projective duality (Hori-Tong ’06, Caldararu et al ’07,  

Ballard et al ’12; Kuznetsov ’05-’06,…)

• examples of closed strings on noncommutative res’ns
(Caldararu et al ’07, Addington et al ’12, ES ’13)

• localization techniques: new GW & elliptic genus 
computations, role of Gamma classes, …

(Benini-Cremonesi ’12, Doroud et al ’12; Jockers et al ’12, Halverson et al ’13, Hori-Romo ’13, Benini et al ’13, ….)

• heterotic strings:  nonpert’ corrections, 2d dualities,  
non-Kahler moduli (many)



My talk today concerns analogues of Seiberg duality in two-
dimensional nonabelian gauge theories with (2,2) and (0,2) 

supersymmetry.

I’ll outline constructions of dualities in a number of examples,  
utilizing geometry as a guide to understand those duals.

Theme:  dualities derived from geometry

As time permits, I’ll also discuss `decomposition’ in 2d 
nonabelian gauge theories.



• (2,2) theories: 

• review         model, hypersurfaces, Grassmannian 

• Theories w/ both fundamentals and antifundamentals - Benini-Cremonesi duality, and first 
application of geometry to derive gauge theory dualities 

• Abelian/nonabelian duality:   G(2,4) vs  

• Pfaffian constructions and more dualities 

• (0,2) theories:  

• `gauge bundle dualization duality’ 

• Gadde-Gukov-Putrov triality via geometry, 

• abelian/nonabelian examples, Pfaffian examples 

• Obstructions to some dualities 

• Decomposition

!PN

P5[2]

Outline

Gauge duality from geometry



Two-dimensional gauge theories are very different from four-
dimensional gauge theories.

Crucial difference:  no gauge dynamics.

In effect, in 2d,  
gauge fields = Lagrange multipliers.

Ex:  gauge instantons => 
worldsheet instantons in low-energy NLSM

As a result, all gauge effects can be understood as  
low-energy NLSM effects.

In principle, makes 2d Seiberg duality a lot easier.



Prototypical example: !Pn model

Gauge theory:
U(1) gauge group, 

matter:  n+1 chiral multiplets, charge +1

Analyze semiclassical low-energy behavior:

D = |
i
∑ φi |

2 − r
V = D2Potential

where

= Fayet-Iliopoulos parameterr

{V = 0}= S2n+1r≫ 0When ,
so semiclassical Higgs moduli space is {V = 0} /U(1) = !Pn

( (2,2) susy )



Prototypical example: !Pn model

Gauge theory:
U(1) gauge group, 

matter:  n+1 chiral multiplets, charge +1

Semiclassical Higgs moduli space is {V = 0} /U(1) = !Pn

Of course, that doesn’t tell the whole story.
r is renormalized at one-loop:

Δr∝ qi
i
∑ here, = n +1

so the         shrinks to strong coupling under RG.!Pn

( (2,2) susy )



Prototypical example: !Pn model ( (2,2) susy )

Summary:

U(1) gauge group, 
matter:  n+1 chiral multiplets, charge +1

Nonlinear sigma model on !Pn

RG

RG



( (2,2) susy )Hypersurfaces

For later use, it will be handy to describe hypersurfaces.

S’pose want NLSM on {G = 0}⊂ !Pn

where G is a homogeneous polynomial of degree d.

Try: U(1) gauge theory, n+1 chiral multiplets charge +1, 
superpotential W = G

But that superpotential is not gauge invariant,  
so this isn’t the answer.

Correct method….



( (2,2) susy )Hypersurfaces

{G = 0}⊂ !Pn
Want gauge theory with low energy limit  

= NLSM on

Answer:
U(1) gauge theory, n+1 chiral multiplets charge +1, 

1 chiral multiplet P charge -d, 
superpotential W = P G

Gauge-invariant superpotential
D = |

i
∑ φi |

2 − d | p |2 − rr≫ 0 : implies φi not all zero

G = 0, pdG = 0 imply, for smooth hypersurface,
p = 0, G = 0

Result is desired NLSM at low energies  
(modulo r renormalization)



Next example:  nonabelian version ( (2,2) susy )

Gauge theory:
U(k) gauge group, 

matter:  n chiral multiplets in fund’ k, n > k

Similar analysis:

Nonlinear sigma model on G(k,n)

Consistency check:  when k=1, G(k,n) = CPn�1

RG

RG



Next example:  nonabelian version ( (2,2) susy )

Dualities:

Mathematically,    G(k,n) = G(n-k,n)
Since IR limits are same,

U(k) gauge group, 
matter:  n chiral multiplets in fund’ k, n > k

is Seiberg dual to

U(n-k) gauge group, 
matter:  n chiral multiplets in fund’ k

Automatic:  same chiral rings, same anomalies,  
     same Higgs moduli space

(n > n-k trivially)



Next example:  nonabelian version ( (2,2) susy )

What if we add antifundamentals ?

Answer (Benini-Cremonesi, ‘12):
U(k) gauge group, 

matter:  n chirals in fund’ k, n>k,  
                    A chirals in antifund’ k*, A<n

is Seiberg dual to

U(n-k) gauge group, 
matter:  n chirals     in fund’ k, A chirals P in antifund’ k*, 

nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

B-C justified by checking elliptic genera; 
we will justify with geometry momentarily….



Next example:  nonabelian version ( (2,2) susy )

We can understand that case geometrically.

U(k) gauge group, 
matter:  n chirals in fund’ k, A chirals in antifund’ k*

Nonlinear sigma model on Tot SA →G(k,n)( )

But how to realize                                  ?Tot (Q*)A →G(n-k,n)( )

= Tot (Q*)A →G(n-k,n)( )
generalizing G(k,n) = G(n-k,n)

Math’ duality:



Next example:  nonabelian version ( (2,2) susy )

How to realize                                  in physics?Tot (Q*)A →G(n-k,n)( )
Trick:  S, Q are related:

0→ S→
Φ
On →Q→ 0

so we build Q using S, On,  
and a superpotential realizing the map.

Here: A antifundamentals P, to realize SA

nA neutrals M, to realize A copies of On

superpotential   W = M   P Φ

— matching B-C dual



U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                   A chirals P in antifund’ k*, 
           nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Next example:  nonabelian version ( (2,2) susy )

Tot SA →G(k,n)( ) Tot (Q*)A →G(n-k,n)( )=

Seiberg

dual

In this fashion, we can understand this 2d version of Seiberg 
duality purely geometrically.



U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                   A chirals P in antifund’ k*, 
           nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Next example:  nonabelian version ( (2,2) susy )

Seiberg

dual

To be fair, I’ve glossed over something….
To play this game in (2,2), I want the geometry to be either 

Fano or CY, to avoid `discrete Coulomb vacua.’

If the geometry is, say, negatively curved, then the correct 
intermediate scale description has extra `dust’,  

and the correct mathematical application is more complicated.

Today, I’ll only work with Fano or CY.



Next example:  nonabelian version ( (2,2) susy )

What about more general matter representations? 
Adjoints, higher tensors, etc?

In 4d, demanding asymptotic freedom would exclude most 
arbitrarily complicated matter representations.

In 2d, no such constraint in principle.

However, we will argue later that there may be different 
constraints in 2d.



( (2,2) susy )Abelian/nonabelian dualities

In 2d there are also Seiberg-like dualities between abelian and 
nonabelian theories.

Trivial example:  G(1,n) = G(n-1,n)
LHS = U(1) gauge theory, n chiral multiplets

RHS = U(n-1) gauge theory, n chiral multiplets

More fun example next….



Abelian/nonabelian dualities ( (2,2) susy )

A more interesting example is motivated by the geometry

G(2,4) degree 2 hypersurface in P5=



Abelian/nonabelian dualities ( (2,2) susy )

U(2) gauge theory, 
matter:  4 chirals    in 2φi

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

W = P(z12 z34 - z13 z24 + z14 z23)

The physical duality implied at top relates abelian & 
nonabelian gauge theories, which in 4d for ex would be 

surprising.

= !2⋅4 / /GL(2) = {z12z34 − z13z24 + z14z23}⊂!
6 / /!×

G(2,4) degree 2 hypersurface in P5=

RG RG

RG
…



Abelian/nonabelian dualities ( (2,2) susy )

Compare symmetries: GL(4) action
φi
α !Vi

jφ j
α zij !Vi

kVj
ℓzkℓ

Relation: zij= εαβφi
αφ j

β

Chiral rings, anomalies, Higgs moduli space match 
automatically.

Can also show elliptic genera match, applying computational 
methods of Benini-Eager-Hori-Tachikawa ’13, Gadde-Gukov ‘13.

U(2) gauge theory, 
matter:  4 chirals    in 2φi

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

W = P(z12 z34 - z13 z24 + z14 z23)

Consistency checks:



Abelian/nonabelian dualities ( (2,2) susy )

Brief outline of elliptic genus of          :P5[2]

By applying susy localization, can derive exact expressions 
in terms of iterated residues.

(Benini, Eager, Hori, Tachikawa ’13; Gadde, Gukov ’13)

Z = 2πη(q)
3

θ1(q, y
−1)

d!∫ u θ1(q, y
−1xe2πi(ζ i+ζ j ) )

θ1(q, xe
2πi(ζ i+ζ j ) )i, j

∏⎛⎝⎜
⎞
⎠⎟
θ1(q, x

−2e2πi(−ζ1−ζ 2−ζ 3−ζ 4 ) )
θ1(q, yx

−2e2πi(−ζ1−ζ 2−ζ 3−ζ 4 ) )

Here,

where the     are fugacities forζ i (!× )4 ⊂GL(4) symmetry

Can show with that the residues match 
those of corresponding flavored elliptic genus of G(2,4).



Abelian/nonabelian dualities ( (2,2) susy )

This little game is entertaining, 
but why’s it useful ?

Standard physics methods rely on matching global 
symmetries and corresponding ’t Hooft anomalies between 

prospective gauge duals.

However, generic superpotentials break all symmetries.

Identifying gauge duals as different presentations of the same 
geometry allows us to construct duals when standard physics 

methods do not apply.



Abelian/nonabelian dualities ( (2,2) susy )

G(2,4)[d1,d2,!]

A simple set of examples in which global symmetry broken:

P5[2,d1,d2,!]=



Abelian/nonabelian dualities ( (2,2) susy )

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
chirals Pa of charge -da, 

superpotential

U(2) gauge theory, 
matter:  4 chirals    in 2!
chirals pa of charge -da 

under det U(2) 
superpotential

φi

W = pa
a
∑ fa (εαβφi

αφ j
β ) W = P(z12z34 − z13z24 + z14z23)+ Pa

a
∑ fa (zij )

εαβφi
αφ j

β = zij
Straightforward extrapolation of previous duality,  

as one might hope.

A simple set of examples in which global symmetry broken:

G(2,4)[d1,d2,!] P5[2,d1,d2,!]=

RG RG



( (2,2) susy )Pfaffians

There exist more exotic dualities implied by geometry. 
To justify them, need to outline construction of Pfaffians.

Let A be an nxn matrix, 
each entry a homogeneous poly’ over a proj’ space 

(or other toric variety), call it V.
A Pfaffian variety is defined by the locus on V where

rank A≤ k for some k.
• Not a hypersurface or a complete intersection in general.

• Only recently has anyone figured out how to describe such 
spaces with GLSM’s. (Hori-Tong ’06, Hori ’11, Jockers et al ’12) 



Pfaffians ( (2,2) susy )

• PAX model
U(n-k) gauge theory, 

chirals Xa in n copies of fundamental, 
chirals Pa in n copies of antifundamental,

W = trPA(Φ)X (plus data for V)

Two constructions of Pfaff = {rankA ≤ k}

• PAXY model
U(k) gauge theory, 

chirals      in n copies of fundamental, 
chirals      in n copies of antifundamental, 

nxn matrix of neutral chirals     ,

!Xa
!Y a

!Pb
a

W = tr !P A(Φ)− !Y !X( ) (plus data for V)

These two constructions are dual to one another….
(Hori ’11, Jockers et al ’12)



Pfaffians ( (2,2) susy )
Duality between PAX, PAXY constructions:

Start with PAX model:
U(n-k) gauge theory, 

chirals Xa in n copies of fundamental, 
chirals Pa in n copies of antifundamental,

W = trPA(Φ)X (plus data for V)

original term new term
Result = PAXY model

Apply B-C duality:
U(k) gauge theory, 

chirals      in n copies of fundamental, 
chirals      in n copies of antifundamentals 

n2 neutral chirals                    , 
plus a new superpotential term for total 

!Xa
!Y a

!Pb
a = (XP)b

a

W = tr(A !P + !P !Y !X) (plus data for V)

(Hori ’11, Jockers et al ’12)



Pfaffians ( (2,2) susy )

Start with standard math result:

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]

It’s then natural to propose….



Pfaffians ( (2,2) susy )

U(2) gauge theory,  
n chirals in fundamental

U(n-2)xU(1) gauge theory, 
n chirals X in fundamental of U(n-2), 

n chirals P in antifundamental of U(n-2), 
(n choose 2) chirals zij = - zji  

           each of charge +1 under U(1), 
W = tr PAX

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]

RGRG

(using description of Pfaffians of  
Hori ‘11, Jockers et al ’12)

Even more complicated possibilities exist.



So far, I’ve outlined various dualities in 2d (2,2) susy theories.

Next:  2d (0,2)

I’ll begin by describing

• a frequently occurring duality

• (0,2) superspace

• dynamical susy breaking in (0,2)

and then discuss various gauge-theoretic dualities.



( (0,2) susy )Gauge bundle dualization duality
(Nope, not a typo….)

Nonlinear sigma models with (0,2) susy defined by
space   , with gauge bundle E→ XX

Duality: CFT(        )  =  CFT(         )X,E X,E*

ie, replacing the gauge bundle with its dual 
seems to be an invariance of the theory.

We’ll use this duality, but first, some checks….

(Parts in ES ’06, complete in Gadde-Gukov-Putrov ’13, Jia-ES-Wu ’14)



Gauge bundle dualization duality ( (0,2) susy )

Check that (0,2) theory invariant under E↔ E*:
Action invariant:

L = 1
2
gµν ∂φ

µ ∂φν + i
2
gµνψ +

µDzψ +
ν + i

2
hαβλ−

αDzλ−
β + Fiȷabψ +

iψ +
ȷλ−

aλ−
b

Under            ,E↔ E* λ−
a ↔ λ−

b F↔− F&
so we see the Lagrangian is invariant.

Consistency conditions:
ch2(E)= ch2(TX) invariant under E↔ E*

Massless spectra:
h• (X,∧•E), h• (X,EndE) invariant under E↔ E*

hp (X,∧q E*)≅ hn−p (X,∧r−q E)using (Serre duality on CY)



Gauge bundle dualization duality ( (0,2) susy )

Check that (0,2) theory invariant under E↔ E*:

Bundle must be `stable’: giȷFiȷ = 0

Math result:  a bundle is stable     iff     its dual is stable.

Can also show:
• elliptic genera match
• compatible with worldsheet instantons

In fact, at some level, this is ~ trivial on worldsheet; just 
flipping complex structure on left movers. 

Let’s move on….



Review of (0,2) multiplets

(2,2) chiral: (φ,ψ + ,ψ − ,F)

(0,2) chiral: (φ,ψ + )

(0,2) Fermi: (ψ − ,F)

(2,2) vector: (Aµ ,σ ,λ+ ,λ− ,D) (WZ gauge)

(0,2) vector: (Aµ ,λ− ,D)

(0,2) twisted chiral: (σ ,λ+ )

Next I’ll describe some (0,2) gauge theories, 
so let me here briefly review (0,2) susy multiplets:



Gadde-Gukov-Putrov triality ( (0,2) susy )

This is a Seiberg-like duality,  
that closes after 3 steps instead of 2.

Let’s walk through it.

Start: U(k) gauge theory, 
matter:  n chirals     in fund’ k, n>k, 

         A Fermi’s in antifund’ k*, 
           B chirals P in antifund’ k*,  

    nB neutral Fermi’s    ,

Φ

Γ
W = ΓΦP

Let’s analyze the geometry…. 

There is a potential gauge anomaly,  
which can be cancelled if                         .B = 2k − n + A



Gadde-Gukov-Putrov triality ( (0,2) susy )

U(k) gauge theory, 
matter:  n chirals     in fund’ k, n>k, 

         A Fermi’s in antifund’ k*, 
           B chirals P in antifund’ k*,  

    nB neutral Fermi’s    ,

Φ

Γ
W = ΓΦP

Space:
Bundle:

G(k,n)
SA ⊕ (Q*)B

r≫ 0 :
Space:
Bundle:

G(k,B)
(S*)A ⊕ (Q*)n

r≪ 0 :
r

Can apply duality to either side….



Gadde-Gukov-Putrov triality ( (0,2) susy )

Space:
Bundle:

G(k,n)
SA ⊕ (Q*)B

r≫ 0 :
Space:
Bundle:

G(k,B)
(S*)A ⊕ (Q*)n

r≪ 0 :
r

Let’s look at geometric equivalences, on LHS:
G(k,n) = G(n − k,n)

Sk =Qn−k
*

Qk
* = Sn−k

So:
Space:
Bundle:

Space:
Bundle:

G(k,n)
SA ⊕ (Q*)B

G(n − k,n)
(Q*)A ⊕ SB

=

which implies a statement about (0,2) gauge theories.



Gadde-Gukov-Putrov triality ( (0,2) susy )

In this fashion, we get a chain of dualities:

SA ⊕ (Q*)2k+A−n →G(k,n) (S*)A ⊕ (Q*)n →G(k,2k + A − n)

(Q*)A ⊕ S2k+A−n →G(n − k,n) (Q*)n ⊕ (S*)2k+A−n →G(n − k,A)

(S*)n ⊕QA →G(A − n + k,2k + A − n) Sn ⊕Q2k+A−n →G(A − n + k,A)
=

=
r

r

r

Qn ⊕ (S*)A →G(k,2k + A − n)
=

Q2k+A−n ⊕ (S*)A →G(k,n)r

But applying gauge bundle dualization duality, 
last line = first line, 

so there is a 3-step sequence. Triality



( (0,2) susy )Prelude to other examples:
U(2) representation conventions

Our next examples will involve gauge bundles defined by 
more general representations of U(2), 

so let me take just a moment to outline conventions.

Will describe an irrep of U(2) by (a,b), a ≥ b

(1,0)   =   2
(0,-1)   =   2*

(1,-1) + (0,0)   =   ad

(0,0)   =   trivial

(a,a)   =   rep of det U(2)
dim (a,b)   =   a - b + 1, Cas1(a,b) = a + b



( (0,2) susy )Abelian/nonabelian dualities

G(2,4)[d1,d2,!]= P5[2,d1,d2,!]
Let’s build on the previous example

by extending to heterotic cases: describe space + bundle.
Example:

Bundle 0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0
on the CY G(2,4)[4].

U(2) gauge theoryDescribed by

4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

rep’ of U(2)



( (0,2) susy )Abelian/nonabelian dualities

Bundle
0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0

on the CY G(2,4)[4].

U(2) gauge theory
4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

Bundle
0→ E→⊕8 O(1)→O(2)⊕2 O(3)→ 0

on the CY P5[2,4]

U(1) gauge theory
6 chirals charge +1

2 Fermi’s charge -2, -4
8 Fermi’s charge +1
1 chiral charge -2
2 chirals charge -3
plus superpotential

• both satisfy anomaly cancellation • elliptic genera match

RGRG

=



Abelian/nonabelian dualities ( (0,2) susy )

Another example:

Bundle 0→ E→O(1,0)⊕5 O(2,1)→O(3,1)⊕2 O(3,2)→ 0

on the CY G(2,4)[4].

• Satisfies anomaly cancellation.

• No idea if there’s an abelian dual on             .P5[2,4]



( (0,2) susy )Pfaffians

It’s also possible to build (0,2) models on Pfaffians.

Deformations off (2,2) locus:

PAX:
W = tr ΛPA(Φ)X + PA(Φ)ΛX + P

∂A(Φ)
∂Φα +Gα (Φ)

⎛
⎝⎜

⎞
⎠⎟ ΛΦ

α X⎛
⎝⎜

⎞
⎠⎟

PAXY:
W = tr(Λ !PA(Φ)+ !P

∂A(Φ)
∂Φα +Gα (Φ)

⎛
⎝⎜

⎞
⎠⎟ ΛΦ

α + Λ !P
!X !Y + !PΛ !X

!Y + !P !XΛ !Y )

In both cases,           (satisfying certain conditions) 
define deformations off (2,2) locus.

Gα (Φ)

These (0,2) PAX, PAXY models are related by  
Seiberg / B-C-like gauge duality.



Pfaffians ( (0,2) susy )

More (0,2) models on Pfaffians.

Example:  PAX model, Pfaffian {rankA ≤ 2}⊂ P7

0→ E→⊕5 O((0,0)−1)⊕
2 O((2,2)0 )→⊕2 O((2,2)−1)⊕O((1,−1)−1)→ 0

Bundle

• anomaly free • dual not known

U(2)xU(1) gauge theory
4 Fermi’s in (1,0)-14 chirals in (0,-1)0

8 chirals in (0,0)+1 (defining     )P7

5 Fermi’s in (0,0)-1

2 Fermi’s in (2,2)0

2 chirals in dual of (2,2)-1

1 chiral in dual of (1,-1)-1
defines E

Described by

+ superpotential



( (0,2) susy )Possible obstructions to duality

So far we have discussed dualities in two-dimensional gauge 
theories with (anti)fundamentals.

What about more general matter representations?

From a geometric perspective, 
our dualities have all boiled down to exchanging

G(k,n)↔G(n − k,n)
(S→G(k,n))↔ (Q* →G(n − k,n))

What would be the analogue for more general matter reps ?



Possible obstructions to duality ( (0,2) susy )

Geometrically, to dualize more general rep’s, 
must construct resolutions of corresponding bundles.

Example:  U(k) gauge theory, Fermi’s in ∧2k
(plus fundamental chirals….)

Pertinent bundle: ∧2S→G(k,n)
Dual: ∧2Q*→G(n − k,n)

To realize
Q* cannot be realized directly, only indirectly w/ sequence.

∧2Q* use
0→∧2 Q*→∧2 On → S*⊗On →Sym2S*→ 0

Potential Problem: how to realize that sequence physically.



Possible obstructions to duality ( (0,2) susy )

Example, cont’d

To realize dual ∧2Q* use
0→∧2 Q*→∧2 On → S*⊗On →Sym2S*→ 0

In open strings, this is easy, and implicitly I’m describing a 
prescription for dualizing arbitrary matter reps on boundaries.

But in (0,2) , we only know how to realize 3-term sequences. 
To realize the dual above,  

I’d need to realize a 4-term sequence, 
and no one knows how to do that in (0,2).



Possible obstructions to duality ( (0,2) susy )

This analysis suggests that it may be difficult to find a  
Seiberg-like gauge theoretic dual 

to a (0,2) theory with random matter representations.

Basic obstruction:  we only know how to realize 3-term 
sequences in (0,2); 

we’d need to realize longer sequences.

Open string boundaries: no such obstruction, 
this gives instead a prescription for construction of duals.

However:  existence of (0,2) mirrors implies there should be 
gauge dualities not understandable as different presentations 

of same geometry.



Let’s conclude with one other worldsheet duality: 
“decomposition”

• no susy required
• describes certain theories as disjoint unions



Decomposition

In a 2d orbifold or gauge theory, 
if a finite subgroup of the gauge group acts trivially on all 

matter, the theory decomposes as a disjoint union.
(Hellerman et al ’06)

Ex:
On LHS, the      acts triv’ly on X, 

hence there are dim’ zero twist fields. 
Projection ops are lin’ comb’s of dim 0 twist fields.

!2

CFT([X/!2 ]) = CFT X X⨿( )

Ex: CFT([X/D4 ]) where                acts trivially on X!2 ⊂ D4

= CFT [X/!2 ×!2 ]⨿ [X/!2 ×!2 ]d.t.( )
D4 /!2 =!2 ×!2where

This is what’s meant by `decomposition’….



Decomposition

Decomposition is also a statement about mathematics. 
Dictionary:

2d Physics Math
D-brane Derived category

Gauge theory Stack
Gauge theory w/ trivially 

acting subgroup Gerbe

Landau-Ginzburg model Derived scheme

Universality class of 
renormalization group flow Categorical equivalence

(Kontsevich ’95,  
ES ’99, Douglas ’00)

(Pantev-ES ’05)

(Pantev, Calaque,  
Katzarkov, Toen,  
Vezzosi, Vaquie,  

work in progress)

}
{Conjecture:



Decomposition

Decomposition is also a statement about mathematics. 
Dictionary:

2d Physics Math
D-brane Derived category

Gauge theory Stack
Gauge theory w/ trivially 

acting subgroup Gerbe

Landau-Ginzburg model Derived scheme

Universality class of 
renormalization group flow Categorical equivalence

Decomposition is a statement about physics of strings on 
gerbes, summarized in the decomposition conjecture….

(Kontsevich ’95,  
ES ’99, Douglas ’00)

(Pantev-ES ’05)

(Pantev, Calaque,  
Katzarkov, Toen,  
Vezzosi, Vaquie,  

work in progress)

}
{Conjecture:



Decomposition

Decomposition conjecture:
(Hellerman et al ’06)

(version for banded gerbes)

CFT(G-gerbe on X)=CFT (X,B)
Ĝ
⨿⎛⎝⎜

⎞
⎠⎟

where the B field is determined by the image of

H 2 (X,Z(G)) →
Z (G )!U (1)

H 2 (X,U(1))

string  
on 

gerbe

string 
on 

disjoint union 
of spaces

characteristic 
class flat B field

Applications:
• predictions for GW inv’ts, checked by H H Tseng et al ’08-‘10
• understand GLSM phases, via giving a physical realization of Kuznetsov’s   

homological projective duality for quadrics (Caldararu et al ’07, Hori ’11,  
Halverson et al ’13…) 

Consistent with:

• D-branes, K theory, sheaves on gerbes

• multiloop orbifold partition f’ns
• q.c. ring rel’ns as derived from GLSM’s



Decomposition

CFT(G-gerbe on X)=CFT (X,B)
Ĝ
⨿⎛⎝⎜

⎞
⎠⎟

Checking this statement in orbifolds involved comparing e.g. 
multiloop partition functions, state spaces, D-branes, …

In gauge theories, there are further subtleties.
Example:

Ordinary        model = U(1) gauge theory with n+1 chiral superfields, 
     each of charge +1

!Pn

Gerby        model = U(1) gauge theory with n+1 chiral superfields, 
        each of charge +k, k>1

!Pn

Require physics of charge k > 1 different from charge 1  
— but how can multiplying the charges by a factor change anything?



Decomposition

For physics to see gerbes, there must be a difference, 
but why isn’t this just a convention? 

How can physics see this?

Answer:  nonperturbative effects
Noncompact worldsheet:  distinguish via    periodicityθ

Compact worldsheet:  define charged field via specific bundle
(Adams-Distler-Plesser, Aspen ’04)

Require physics of charge k > 1 different from charge 1  
— but how can multiplying the charges by a factor change anything?

Decomposition has been extensively checked for abelian 
gauge theories and orbifolds;  

nonabelian gauge theories much more recent….



Decomposition

Extension of decomposition to nonabelian gauge theories:

Since 2d gauge fields don’t propagate, 
analogous phenomena should happen in nonabelian gauge 

theories with center-invariant matter.

Proposal:

For G semisimple, with center-inv’t matter, 
G gauge theories decompose into a sum of theories with 

variable discrete theta angles:

(ES, ’14)

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

— SO(3)’s have different discrete theta angles



Decomposition

Extension of decomposition to nonabelian gauge theories:

Aside:  discrete theta angles

Consider 2d gauge theory, group G = !G /K
!G compact, semisimple, simply-connected
K finite subgroup of center of !G

λ(w)

The theory has a degree-two   -valued char’ classK w
For   any character of   , can add a term to the actionKλ

— discrete theta angles, classified by characters

Ex:                                  has 2 discrete theta anglesSO(3) = SU(2) /!2

(Gaiotto-Moore-Neitzke ’10, !
Aharony-Seiberg-Tachikawa ’13, Hori ‘94) 



Decomposition

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

Let’s see this in pure nonsusy 2d QCD.

Z(SU(2))= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps

Z(SO(3)+ )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SO(3) reps

Z(SO(3)− )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps 

that are not SO(3) reps

(Tachikawa ’13)

Result: Z(SU(2)) = Z(SO(3)+ )+ Z(SO(3)− )

(Migdal, Rusakov)



Decomposition

More general statement of decomposition for 2d nonabelian 
gauge theories with center-invariant matter:

For G semisimple, K a finite subgp of center of G,

G = (G /K )λ
λ∈K̂
∑

indexes discrete  
theta angles

Other checks include 2d susy partition functions, 
utilizing Benini-Cremonesi ‘12, Doroud et al ’12; 

arguments there revolve around cocharacter lattices.



• (2,2) theories: 

• review         model, hypersurfaces, Grassmannian 

• Theories w/ both fundamentals and antifundamentals - Benini-Cremonesi duality, and first 
application of geometry to derive gauge theory dualities 

• Abelian/nonabelian duality:   G(2,4) vs  

• Pfaffian constructions and more dualities 

• (0,2) theories:  

• `gauge bundle dualization duality’ 

• Gadde-Gukov-Putrov triality via geometry, 

• abelian/nonabelian examples, Pfaffian examples 

• Obstructions to some dualities 

• Decomposition

!PN

P5[2]

Summary:  duality from geometry


