

Update on Large Sensor Studies

Mechanical Properties, Electrical Properties of Non-irradiated Large Barrel Sensors, inner cut (slim dice), and outer cut (normal dice)

> Bart Hommels Cavendish Laboratory University of Cambridge

ATLAS12A Sensors

		VPX12518
		653
•	another shinment of 20 sensors	655
		656
•	type: ATLAS12A	657
•	hatch: V/PX12518	659
		660
•	Wafer list: see table on right	663
•	SCT ID: 25220901100xxx	664
		665
	where xxx is wafer ID	668
		669
		675
•	narrow common P-stop w/ 4E+12 concentration	679
•	All clim dicing ("Inner Cut")	687
•	All sinn dicing (inner Cut)	689
		690
		691
		695
		090

Metrology measurements summary

Sensor bow determined from z-height points measured by non-contact (optical) measurement microscope. Sensor is freely suspended on a glass plate.

The coordinate system used is pictured on the left: the z-height at the origin (sensor centre) is defined as 0

Sensor net bow is obtianed by subtracting a fitted flat plane from the measurement data points

The table on the right lists the greatest z height difference for the sensor

The plot below, on wafer 655, is typical for the batch

	统政	IINIVERSITY	OF
У	VPX12518	max z diff	GE
	653	56	
	655	34	
	656	30	
	657	45	
	659	54	
	660	38	
	661	29	
	663	32	
	664	49	
	665	34	
	668	31	
	669	45	
	675	28	
	679	27	
	687	40	
	689	36	
	690	38	
	691	41	
	694	50	
	695	40	

All sensors are flat within 40µm

NB: VPX12318 batch was flat within 80µm, specification is 200µm

All sensors have convex shape

(centre higher than edges)

16/01/2014

вап ноттель - University of Cambridge

I-V Measurement summary

During measurement, the sensor is sitting in a light-tight box, flushed with N_2 . Due to time constraints, only 2 sensors were measured so far.

W655 initially suffered from early breakdown (at ~800V), this was cured by conditioning, and running the IV once at 10V/1s increments, as is done by HPK, instead of our internally agreed 10V/10s steps.

Both sensors are well within specification

Depletion Measurements summary

Depletion voltage measurement taken directly after IV curve

Sensor is kept in light tight box with N₂ flush.

W653, W655 full depletion reached at 354, 376 V respectively.

Capacitance at 500V bias is 3.147, 3.158 nF, respectively. Measuring the area within the bias ring, and assuming $\epsilon_r(Si)=11.86$, the resulting active depth yields 305 μ m

16/01/2014

Bart Hommels - University of Cambridge