Hollow Bunches for Potential Space Charge Mitigation

Creation of Hollow Bunches in the PSBooster

Adrian Oeftiger, Giovanni Rumolo

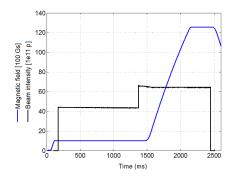
CERN Space Charge Collaboration Meeting May 21, 2014

Acknowledgements: Christian Carli, Heiko Damerau, Simone Gilardoni, Steven Hancock, Kevin Li, Raymond Wasef

Outline

Introduction: Space Charge and Hollow Bunches

- 2 Simulation Results: Creation of Hollow Bunches
 - Insertion of Empty Phase Space
 - Inversion of Phase Space Contours
 - Parametric Dipolar Excitation



Direct Space Charge – Transverse Tune Spread $\Delta Q_{x,y}^{\max} = -\frac{r_p \lambda_{\max}}{2\pi \beta^2 \gamma^3} \oint ds \frac{\beta_{x,y}(s)}{\sigma_{x,y}(s) \cdot (\sigma_x(s) + \sigma_y(s))}$ $\sigma_{x,y}(s) = \sqrt{\epsilon_{x,y} \cdot \beta_{x,y}(s) + (D_{x,y}(s) \cdot \delta)^2}, \qquad \delta \doteq \frac{\delta p}{p_0}$

- increase energy \Longrightarrow higher β, γ
- flatten line density and reduce λ_{\max}
- increase beam size σ through either momentum spread or larger dispersion

longitudinally hollow bunches

Situation at CERN Machines

PS: injection plateau of 1.2 s at

$$E_{kin} = 1.4 \, \text{GeV}$$

- presently: $\Delta Q_v^{\text{max}} = 0.31$
- future LINAC4: double intensity $\Rightarrow \Delta Q_{x,y} \propto N$

 \rightsquigarrow space charge threat

Figure: PS acceleration cycle (LHC type beams)

Situation at CERN Machines

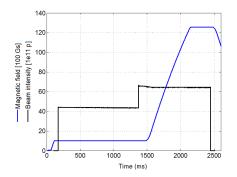


Figure: PS acceleration cycle (LHC type beams) PS: injection plateau of 1.2 s at

- $E_{kin} = 1.4 \, \mathrm{GeV}$
 - presently: $\Delta Q_v^{\text{max}} = 0.31$
 - future LINAC4: double intensity $\Rightarrow \Delta Q_{x,y} \propto N$

 \rightsquigarrow space charge threat

- \implies countermeasure: $\Delta Q_y^{\max} \propto 1/(\beta \gamma^2)$ increase PSB ejection energy to 2 GeV
- \implies additional option: create hollow bunches in PSB and transfer them to PS

- How to create longitudinally hollow bunches starting from a Gaussian distribution? Several options...
- \longrightarrow make use of dual harmonic RF systems

Scalar Potential for Stationary Dual Harmonic RF System

$$U(z) \propto \left[rac{V_1}{h_1}\, \cos\left(rac{h_1 z}{R} + \delta \phi_1
ight) + rac{V_2}{h_2}\, \cos\left(rac{h_2 z}{R} + \delta \phi_2
ight)
ight]$$

 \implies (adiabatic) manipulation of parameters V1, V2, $\delta\phi_1$, $\delta\phi_2$

- How to create longitudinally hollow bunches starting from a Gaussian distribution? Several options...
- \longrightarrow make use of dual harmonic RF systems
 - C. Carli suggested two methods in CERN/PS 2001-073
 - insertion of empty phase space into bunch centre
 - invert phase space distribution: redistribution of phase space contours between bunch centre and periphery
 - \implies proof of principle of inversion method **2** in PSB 2001

- How to create longitudinally hollow bunches starting from a Gaussian distribution? Several options...
- ightarrow resonant parametric dipolar excitation of bucket phase

Scalar Time-dependent Potential for Dipolar Excitation

$$U(z,t)\propto\cos\left(rac{hz}{R}+\delta\hat{\phi}\cdot\sin\left(h\,\omega_{5}t
ight)
ight)$$

- feasibility in CERN machines investigated by
 S. Hancock et al. in CERN/PS 93-18
- \implies proof of principle in PS 1993

- How to create longitudinally hollow bunches starting from a Gaussian distribution? Several options...
- \longrightarrow S. Hancock et al. proposed application of a sweeping high harmonic in *CERN/PS 99-36*

 \implies proof of principle in PS 1998 + acceleration

 \longrightarrow phase space painting at H^- injection (LINAC4)

 \rightarrow (...)

General Simulation Parameters

- framework: PyHEADTAIL (development by Kevin Li et al.)
 - \implies user-friendly port of HEADTAIL to python
- $E_{\rm kin} = 1.4 \, {\rm GeV}$, PSB at extraction energy
- $\epsilon_z^{\rm norm}=1.2\,{\rm eV}\,{\rm s},$ initial longitudinal emittance
- $B_L \doteq rac{4\sigma_z}{eta c} = 180\,\mathrm{ns},$ initial bunch length
- $V_{\rm rf} = 8 \, {\rm kV}$, voltage of fundamental RF system
- $\gamma_{\rm tr} =$ 4.05, operation below transition
- $Q_S = 2.548 imes 10^{-4}$, synchroton period \sim 4000 turns
- \implies no longitudinal space charge effects included yet

Contour Inversion

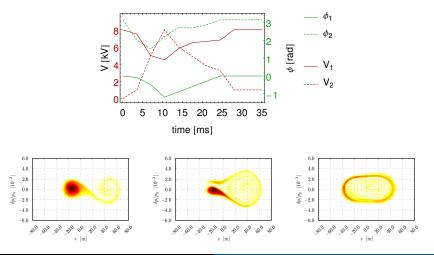
Outline

Introduction: Space Charge and Hollow Bunches

2 Simulation Results: Creation of Hollow Bunches

- Insertion of Empty Phase Space
- Inversion of Phase Space Contours
- Parametric Dipolar Excitation

3 Conclusions


1. Empty Phase Space

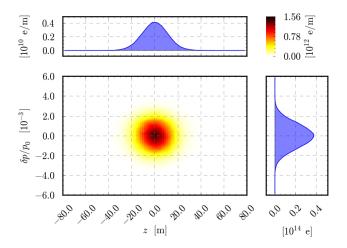
2. Contour Inversion


3. Parametric Excitation

Scheme 1 Parameters

• 70'000 turns, i.e. 35 ms (1 turn $\hat{=}$ 0.5 μ m)

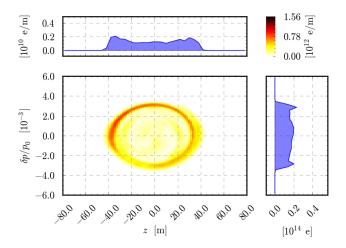
Adrian Oeftiger Hollow Bunch Study



1. Empty Phase Space

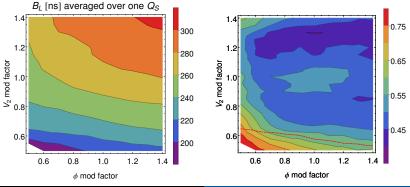
2. Contour Inversion

3. Parametric Excitation


Scheme 1 Results

1. Empty Phase Space

Scheme 1 Results

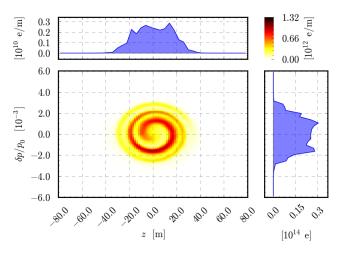


Empty Phase Space
 Contour Inversion

3. Parametric Excitation

Scheme 1 Parameter Scan

- bunch length B_L gets quite large \implies parameter scan
- scan second harmonic voltage V_2 and relative phase ϕ_{12}
- \bullet optimise for depression resp. gain factor $\lambda_{\max}^{\rm flat}/\lambda_{\max}^{\rm gauss}$


1. Empty Phase Space

2. Contour Inversion

3. Parametric Excitation

Scheme 1 optimum B_L

• choose V_2 reduced by 0.5 (leave ϕ_{12}) \implies $B_L \approx 60 \text{ m} (220 \text{ ns})$

1. Empty Phase Space

2. Contour Inversion

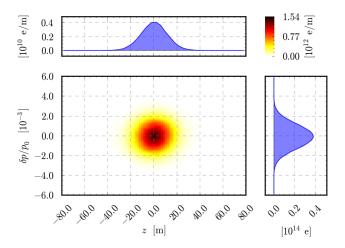
3. Parametric Excitation

Scheme 2 Parameters

• 70'000 turns, i.e. 35 ms (1 turn $\hat{=}$ 0.5 μ m)

10 of 18

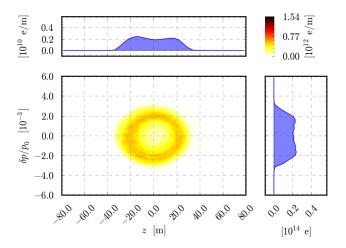
Adrian Oeftiger Hollow Bunch Study



Empty Phase Sp

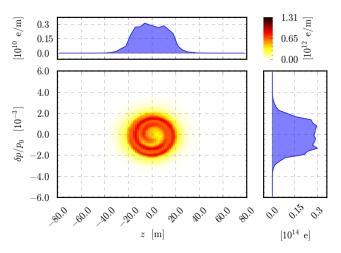
2. Contour Inversion

3. Parametric Excitation


Scheme 2 Results

2. Contour Inversion

Scheme 2 Results

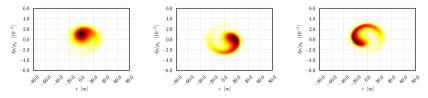

1. Empty Phase Space

2. Contour Inversion

3. Parametric Excitation

Scheme 2 optimum B_L

• choose V_2 reduced by 0.76 (leave ϕ_{12}) \Longrightarrow $B_L \approx 60 \text{ m}$ (220 ns)


1. Empty Phase Space

2. Contour Inversion

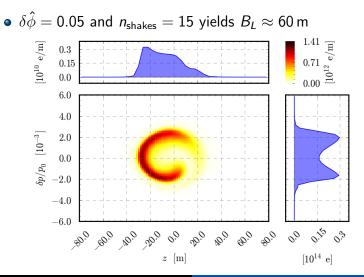
3. Parametric Excitation

Scheme 3 Parameters

 shake bucket phase with synchroton frequency ω_S of outer particles (~ 0.98 ω_{S,linear}) for n_{shakes} synchroton periods

• scan shaking amplitudes $\delta \hat{\phi}$ and shaking periods n_{shakes} \implies optimum distributions featuring $B_L < 60 \text{ m} (220 \text{ ns})$

$\delta \hat{\phi} \left[\sigma_z \right]$	0.5	0.15	0.125	0.1	0.075	0.05	0.025
$n_{ m shakes} \left[2\pi/\omega_{S} ight]$	5	6	7	9	11	15	25

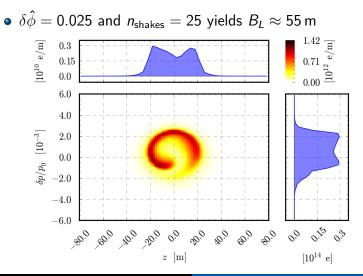


1. Empty Phase Space

2. Contour Inversion

3. Parametric Excitation

Scheme 3 Results I

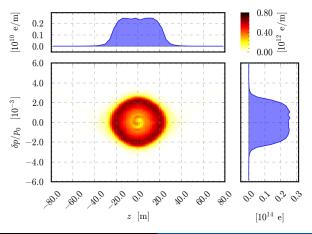


1. Empty Phase Space

2. Contour Inversion

3. Parametric Excitation

Scheme 3 Results I


1. Empty Phase Space

2. Contour Inversion

3. Parametric Excitation

Scheme 3 Results II

• evolution of longitudinal phase space in **PS** after 100 ms for scheme 3 with $\delta \hat{\phi} = 0.025$ and $n_{\rm shakes} = 25$

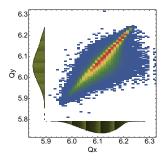
2. Comparison

Outline

1 Introduction: Space Charge and Hollow Bunches

2 Simulation Results: Creation of Hollow Bunches

- Insertion of Empty Phase Space
- Inversion of Phase Space Contours
- Parametric Dipolar Excitation


3 Conclusions

ollow Bunch Creation

1. Tune Footprints

Tune Footprints in PS

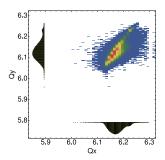


Figure: Gaussian distribution $(B_1 = 180 \text{ ns})$

Figure: hollow distribution (parametric excitation method)

 $\implies \Delta Q_{x,y}^{\max}$ reduced by up to 45% w.r.t. $B_I^{gauss} = 180 \text{ ns}$ (or 35% w.r.t. $B_I^{gauss} = 220 \text{ ns}$) plots: thanks to R. Wasef

2. Comparison

	scheme 1	scheme 2	scheme 3
V_2 mod factor	0.5	0.76	n.a.
$\begin{array}{c} {\rm gain} \ \lambda_{\rm max}^{\rm flat}/\lambda_{\rm max}^{\rm gauss} \\ {\rm (w.r.t.} \ B_L^{\rm gauss} = 220 {\rm ns}) \end{array}$	pprox 80%	pprox 90%	pprox 75%

- scheme 1 very sensitive to slight changes in trim functions
- scheme 2 has been successfully tested in PSB by C. Carli
 - \implies not feasible during acceleration (phase lock of RF systems)
- scheme 3 has been successfully tested in PS by S. Hancock
 - \implies in principle feasible during acceleration
- hollow bunches have never been used operationally at CERN!

2. Comparison

Perspectives

simulation projects:

- explore feasibility of parametric excitation method during acceleration in PSB
- investigate smoothing of excited bunch (scheme 3) by sweeping high-frequency modulation
- implement longitudinal space charge and study impact
- study behaviour during later RF gymnastics

experimental projects:

• hollow bunches scheduled for MDs in autumn 2014

Thank you for your attention!

Any comments, suggestions, objections? Please write to me: oeftiger@cern.ch