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Review on Statistical Mechanics: Langevin Equation

Space Charge effects including intra-beam scattering: multiple
small-angle Coulomb scattering within a charged
particle beam that circulates in a storage ring.

 basically N-body problem with N very large, fully determined
by both the coupled single particle equations of motion

m
d2x i

dt2 − F ext(x i , t)−
q2

4πεo

∑
j 6=i

x i − x j∣∣x i − x j
∣∣3 = 0, i = 1, . . . ,N

and the initial N-body distribution function

ρ(x ,v , t0) =
∑

i

δ3(x − x i(t0)
)
δ3(v − v i(t0)

)
 the granular nature of the beam’s charge distribution must

be taken into account
 for analytical approaches, only a statistical description is

possible
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A statistical description means to replace the exact, fine-grained
Coulomb force E sc by its smoothed, continuous average force

E sc(x , t) −→ E sm
sc (x , t)

The fine-grained aspect of the particle motion is then modeled
by an additional fluctuating force F L(x , t) that has only
statistically defined properties. This force must vanish on the
average over all particles

〈F L〉 = 0

Furthermore, a force referred to as dynamical friction F fr(v , t)
must be introduced to obtain the statistical counterpart of the
deterministic single particle equation of motion, referred to as
the Langevin equation

m
d2x
dt2 − F ext − qE sm

sc − F fr = F L.

The amplitudes of F fr and F L depend on each other
 fluctuation-dissipation theorem
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The effect of dynamical friction for repelling forces may be
visualized as

      before after closest encounterand

As is easily verified, a friction also occurs for attracting forces.
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Fokker-Planck Equation

A formal solution of the Langevin equation is not possible.

Instead, on the basis of the Langevin equation, we can set up
the Fokker-Planck equation in order to determine the time
evolution of the probability density f , defined as the
6-dimensional “µ-phase-space” density function

f = f (x ,v , t)

 f dx dv provides the probability finding a particle inside the
volume dx dv around the phase-space point q ≡ (x ,v) at
time t .

 f is a smooth function of the phase-space variable q.
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Fokker-Planck equation: Replacement of the reversible original
problem of solving N coupled second order differential
equations by one equation of motion for the probability density f :

∂f
∂t

= LFPf

 We have given up the knowledge on the location of
individual particles.

 We restrict ourselves to the knowledge of the evolution of
the probability density function f .

 The phenomenon of irreversibility emerges as a result of
this description (to be discussed later in this talk).

With the particular Langevin equation from above

m
d2x
dt2 = F ext + qE sm

sc + F fr + F L
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the Fokker-Planck operator LFP reduces to

LFP =
3∑

i=1

[
− ∂

∂xi
vi −

1
m

∂

∂vi
Ftot,i +

∂2

∂v2
i

Dii

]
,

with Ftot,i defined as the sum of all non-Langevin forces

Ftot,i(x ,v , t) = Fext,i(x , t) + qE sm
sc,i(x , t) + Ffr,i(vi , t) ,

and the diffusion coefficients Dii〈
FL,i(vi , t) FL,j(vj , t ′)

〉
= 2m2Dii(vi , t) δij δ(t − t ′).

 The FP equation describes a diffusion process in velocity
space that is counteracted by the dynamical friction.

 The process evolves within an effective potential given by
the external focusing and the smooth part of the self-fields.

 The Langevin forces occurring in the given system may be
any kind of random forces of physical or numerical nature.
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Discussion of the Fluctuation-Dissipation Theorem

Systems in dynamical equilibrium are governed by
diffusion: effect that drives a quantity off its steady-state
value (fluctuation)
friction: effect that causes the decay of this deviation from
the steady-state value (dissipation)

The diffusion process and friction effects are not independent
of each other.
 Both effects are related by a fluctuation-dissipation

theorem
 Simplest case (isotropic process): Einstein relation

D ≡ Dii = βf
kBTeq

m
.

We will use this simple approximation in our approach.
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Moment Analysis of the Fokker-Planck Equation

A direct solution of the Fokker-Planck equation would
be too costly
yield too much information since the detailed knowledge of
f is not necessary in order to estimate stochastic effects in
ion beams

A usual way to switch to more global physical quantities is to
consider moments of f (x ,v , t):〈

x2〉(t) =

∫
x2 f dτ, dτ = d3xi d3vi√〈

x2
〉

is proportional to the actual beam width in x .
The derivatives of the moments are calculated according to

d
dt
〈
x2〉 =

∫
x2 ∂f

∂t
dτ,

and inserting ∂f/∂t = LFPf .
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Integrating by parts, we obtain for each phase-space plane i a
coupled set of moment equations

d
dt
〈
x2

i
〉
− 2
〈
xivi
〉

= 0

m
d
dt
〈
xivi
〉
−m

〈
v2

i
〉
−
〈
xiFext,i

〉
− q

〈
xiE sm

sc,i
〉

=
〈
xiFfr,i

〉
m

d
dt
〈
v2

i
〉
− 2
〈
viFext,i

〉
− 2q

〈
viE sm

sc,i
〉

= 2
〈
viFfr,i

〉
+ 2m

〈
Dii
〉

As usual, we define the rms emittance εi(t) as

ε2
i (t) =

〈
x2

i
〉〈

v2
i
〉
−
〈
xivi
〉2

The time derivative of the rms emittance may be arranged as

d
dt
ε2

i (t) =
d
dt
ε2

i (t)
∣∣∣∣
ext

+
d
dt
ε2

i (t)
∣∣∣∣
sc

+
d
dt
ε2

i (t)
∣∣∣∣
ir
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d
dt ε

2
i (t)

∣∣
ext and d

dt ε
2
i (t)

∣∣
sc describe the reversible emittance

change effects due to non-linear external focusing forces and
non-linear electric self-fields.
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x2
i
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viE sm
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xivi
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xiE sm
sc,i
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The third contribution to the change of the emittance emerges
from the irreversible Fokker-Planck operator Lir
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 The rms emittance growth depends on both the Fokker-Planck
coefficients and and the specific shape of the envelope functions.
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Generalized Beam Envelope Equations

With
Ffr,i = −mβf vi , Fext,i = −mω2

i (t) xi

we obtain the well-known envelope equation from the first two
moment equations with an additional damping term

d2

dt2

√〈
x2

i

〉
+βf

d
dt

√〈
x2

i

〉
+ω2

i (t)
√〈

x2
i

〉
− q

m

〈
xiE sm

sc,i

〉√〈
x2

i

〉 − ε2
i (t)√〈
x2

i

〉3
= 0

For the irreversible emittance change, the above
approximations lead to

1〈
x2

i

〉 d
dt
ε2

i (t)

∣∣∣∣∣
ir

= 2βf

(
kBTeq

m
−
ε2

i (t)〈
x2

i

〉)

 Simple temperature relaxation equation

 Closed set of differential equations for
√〈

x2
i

〉
and ε2

i (t).
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Non-Equilibrium Beam Temperatures

For charged particle beams, we define the generalized,
non-equilibrium temperature kBTi as the incoherent part of the
kinetic energy of the beam particles in the i-th degree of freedom:

kBTi ≡ m
〈(

v inc
i
)2
〉
, v inc

i = vi − xi

〈
xivi
〉〈

x2
i

〉
since the total kinetic energy m

〈
v2

i
〉
/2 contains a coherent

part if 〈xivi〉 6= 0. With the rms emittance εi defined by

ε2
i (t) =

〈
x2

i
〉〈

v2
i
〉
−
〈
xivi
〉2
,

the non-equilibrium temperature kBTi of the i-th degree of
freedom can then be expressed as

kBTi(t) = m
ε2

i (t)〈
x2

i

〉 .
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Equilibrium Temperature

With kBTz,b = m
〈
(∆vz,b)2〉, the longitudinal temperature in the

beam frame, we may define the equilibrium temperature Teq as
the arithmetic mean of the temperatures Tx , Ty , and Tz

kBTeq

m
=

kB

3m
(Tx + Ty + Tz) =

1
3

(
ε2

x〈
x2
〉 +

ε2
y〈

y2
〉 +

〈
(∆vz,b)2

〉)

For a coasting beam in a strong focusing system, we have

Tx > Teq ⇐⇒ Ty < Teq

and vice versa.
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Emittance Growth Rates

With the temperature relations, the above formula for the
irreversible emittance growth is obtained for the x-direction as

1〈
x2
〉 d

dt
ε2

x (t)

∣∣∣∣∣
ir

= −2βf

3

(
2ε2

x (t)〈
x2
〉 − ε2

y (t)〈
y2
〉 − 〈(∆vz,b)2

〉)
,

or, equivalently, with the temperature ratios

rxy =
Ty (t)
Tx (t)

, rxz =
Tz(t)
Tx (t)

, ryz =
Tz(t)
Ty (t)

as
d
dt

ln ε2
x (t)

∣∣∣∣
ir

=
2βf

3
(rxy + rxz − 2) .

 The change of the emittance may be positive as well as negative.
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Entropy

Summing over all three degrees of freedom, we get

1
kB

dS
dt

Def
=

d
dt

ln ε2
xε

2
yε

2
z

∣∣∣∣
ir

=
2βf

3

(
(1− rxy )2

rxy
+

(1− rxz)2

rxz
+

(1− ryz)2

ryz

)
≥ 0.

 The change of the “total emittance” is always positive
 S has the character of an entropy within a closed system

Integration yields the e-folding time τef of the total emittance ε

τ−1
ef = 1

9 βf (Ixy + Ixz + Iyz), ε = 3
√
εxεyεz

with the local temperature imbalance integrals per period (turn) T

Ixy =
1
T

T∫
0

[
1− rxy (t)

]2
rxy (t)

dt ≥ 0, rxy (t) =
ε2

y〈
y2
〉 〈x2〉
ε2

x
.

We will see that this description also applies to computer noise
effects in simulations of charged particle beams.
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With the abbreviations

a =
√〈

x2
〉

b =
√〈

y2
〉

δ =
√〈

(∆p/p)2
〉

D = ∆x/(∆p/p)

η = γ−2 − D/ρ

A =
√

a2 + D2δ2

K = 2Ze0I/(4πε0mc3β3γ3)

the complete system of moment equations for a coasting beam
with elliptic cross section in real space and generalized
perveance K that propagates through a dispersive system reads:
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Complete Closed Set of Moment Equations

ä + βf ȧ + ω2
x a− K/2

A(A + b)
a− ε2

x
a3 = 0

b̈ + βf ḃ + ω2
y b − K/2

A + b
−
ε2

y

b3 = 0

D̈ +
(
ω2

x − ρ−2
)

D − K/2
A(A + b)

D − 1
ρ

= 0

1
a2

d
dt
ε2

x + 2
3βf

(
2
ε2

x
a2 −

ε2
y

b2 − ηδ
2

)
= 0

1
b2

d
dt
ε2

y + 2
3βf

(
2
ε2

y

b2 −
ε2

x
a2 − ηδ

2

)
= 0

η
d
dt
δ2 + 2

3βf

(
2ηδ2 − ε2

x
a2 −

ε2
y

b2

)
= 0

Jürgen Struckmeier PIC Noise in Charged Particle Beams



PERIODIC QUADRUPOLE CHANNEL , SIGMA-0=60 DEG. , SIGMA=15 DEG.                   kv - 1839
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ESR - QH = 2.31   QV = 2.25                                                     kv - 1823
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Irreversibility in Computer Simulations

The friction forces Ffr,i must always be decelerating.

Ffr,i(vi) = −Ffr,i(−vi),  Dii(vi) = Dii(−vi).

Transformation that reverses the direction of time flow:

t → −t  xi → xi , vi → −vi .

We may separate the components of the Fokker-Planck
operator with respect to their behavior under time reversal

LFP = Lrev + Lir.

The reversible operator Lrev: terms that change sign under time
reversal, hence leave ∂f/∂t = Lrevf invariant.
 Earlier states are fully restored — just like a movie that is

reversed at some instant of time t0  Vlasov equation.
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Lrev =
3∑

i=1

[
− ∂

∂xi
vi −

1
m

∂

∂vi

(
Fext,i + qE sm

sc,i

)]
.

The smooth self-field E sm
sc is obtained from the real space

projection of the probability density f (q, t) via Poisson’s
equation.

The components that do not change sign make up Lir

Lir =
3∑

i=1

∂

∂vi

[
−

Ffr,i(vi , t)
m

+
∂

∂vi
Dii(vi , t)

]
.

Lir describes those effects that do not depend on the direction
of the time flow. In other words, it describes the irreversible
aspects of the particle motion.

Real system: mixture of reversible and irreversible behavior.
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Emittance growth factors versus number of cells obtained for a
non-stationary initial phase-space density at σ0 = 60◦, σ = 15◦,
2500 simulation particles.
The vertical dashed line marks the point of time reversal after 5 cells.
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Emittance growth factors versus number of cells obtained for a
non-stationary initial phase-space density at σ0 = 60◦, σ = 15◦,
2500 simulation particles.
The vertical dashed line marks the point of time reversal after 20 cells.
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Emittance growth factors versus number of cells obtained by 3-D
simulations of a periodic non-isotropic focusing system at σ0 = 60◦,
σ = 15◦ per cell, 2000 simulation particles.
After 100 cells the time reversal occurs.
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PERIODIC SOLENOID CHANNEL , SIGMA-0=60 DEG. , SIGMA=30 DEG. kv - 3685
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Periodic solenoid channel (FOFO), σ0 = 60◦, σ = 30◦.
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PERIODIC QUADRUPOLE CHANNEL , SIGMA-0=60 DEG. , SIGMA=30 Deg. kv - 3687
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Periodic quadrupole channel (FODO), σ0 = 60◦, σ = 30◦.
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PERIODIC SYMMETRIC FODO CHANNEL , SIGMA-0=60 DEG. , SIGMA=30 Deg. kv - 3686
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Fictitious symmetric FODO channel, σ0 = 60◦, σ = 30◦.
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2D emittance growth factors versus number of cells for different
focusing lattices, 104 simulation particles, and 256 mesh points.
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2D emittance growth factors versus number of cells for different
focusing lattices, 5 · 103 simulation particles, and 256 mesh points.
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2D emittance growth factors versus number of cells for different
focusing lattices, 5 · 103 simulation particles, and 128 mesh points.
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2D emittance growth factors versus number of cells for different
focusing lattices, 5 · 103 simulation particles, and particle-particle
interaction.
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different focusing lattices, 5 · 103 simulation particles, and
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Summary

The Fokker-Planck equation provides the starting point for
analytical approaches in the physics of charged particle
beams if the actual charge granularity cannot be neglected.
The moment analysis of the Fokker-Planck equation
consistently extends F. Sacherer’s moment analysis of the
Vlasov equation.
As a good approximation, the emittance growth rates that
are due to intra-beam scattering depend on both the
accumulated temperature imbalances along a storage ring
and the friction coefficient βf , which represents the only
characteristic parameter of the statistical description.
The approach also applies for the description of noise
effects in computer simulations.
In that case, the parameter βf measures the deviation from
a completely reversible numerical calculation (βf = 0).
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