## IMPACT: Benchmarking

## Ji Qiang

Lawrence Berkeley National Laboratory
CERN Space-Charge Collaboration Meeting, May 20-21, 2014

## IMPACT Code Suite:

## Integrated Map and Particle ACcelerator Tracking



- IMPACT-Z: parallel PIC code (z-code)
- IMPACT-T: parallel PIC code (t-code)

IMPACT has been used by researchers at more than 30 institutes and universities

- Envelope code, pre- and post-processors,...
- Key Features
- Detailed RF accelerating and focusing $\underset{\in \in R}{ }{ }^{\circ}$ del, beam line elements of Linacs and Rings t? Didy. cas
- Multiple 3D Poisson solvers
- Variety of boundary conditions: transverse round/rectangular, longitudinal open/periodic, ...
- 3D shifted-integrated Green Functivin
- Multi-charge states, multi-bunches
- Machine error studies and steering
- Wakefields
- CSR/ISR
- Gas ionization

IBS
Mumbalfogiv.

Tsinghua Univ. Australian Synch.


## Particle-In-Cell Simulation with Split-Operator Methodre



# IMPACT-Z for Space-Charge Study in Ring 

 (fully 6D symplectic tracking)Drift - exact solution
Combined function bend - direct symplectic integrator
Quadrupole - direct symplectic integrator
RF cavity - thin lens kick
Nonlinear Multipoles - thin lens kick
Space-charge forces- lumped thin lens kick

## An Example: Symlectic Tracking through a Combined

 Function Bend$$
\begin{aligned}
H & =H_{1}+H_{2} \\
H_{1} & =-\left(1+\frac{x}{\rho_{c}}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}+b_{0} x+b_{0} \frac{x^{2}}{2 \rho_{c}} \\
H_{2} & =V\left(x, y, \rho_{c}\right)
\end{aligned}
$$

Exact solution for $H_{l} \quad x^{f}=\frac{\rho_{c}}{b_{0}}\left(\frac{1}{\rho_{c}} \sqrt{(1+\delta)^{2}-p_{x}^{f^{2}}-p_{y}^{2}}-\frac{d p_{x}^{f}}{d s}-b_{0}\right)$

$$
\begin{aligned}
& p_{x}^{f}=p_{x} \cos \left(\frac{s}{\rho_{c}}\right)+\left(\sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}-b_{0}\left(\rho_{c}+x\right)\right) \sin \left(\frac{s}{\rho_{c}}\right) \\
& y^{f}=y+\frac{p_{y} s}{b_{0} \rho_{c}}+\frac{p_{y}}{b_{0}}\left\{\arcsin \left(\frac{p_{x}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)-\arcsin \left(\frac{p_{x}^{f}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)\right\} \\
& p_{y}^{f}=p_{y} \\
& \delta^{f}=\delta \\
& \tau^{f}=\tau+\frac{(1+\delta) s}{b_{0} \rho_{c}}+\frac{(1+\delta)}{b_{0}}\left\{\arcsin \left(\frac{p_{x}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)-\arcsin \left(\frac{p_{x}^{f}}{\sqrt{(1+\delta)^{2}-p_{y}^{2}}}\right)\right\}
\end{aligned}
$$

Transfer map for one step: $\quad M(\tau)=M_{2}(\tau / 2) M_{1}(\tau) M_{2}(\tau / 2)+O\left(\tau^{3}\right)$

## Different Boundary/Beam Conditions Need Different Efficient Numerical Algorithms O(Nlog(N)frror ${ }^{r} \mathrm{CrO}(\mathbb{N})$

FFT based Green function method:

- Standard Green function: low aspect ratio beam
- Shifted Green function: separated particle and field domain
- Integrated Green function: large aspect ratio beam
- Non-uniform grid Green function: 2D radial non-uniform beam

Fully open boundary conditions
Spectral-finite difference method:
Partially open boundary
Transverse regular pipe with
longitudinal open
Multigrid spectral-finite difference method:
Transverse irregular pipe
J. Qiang, S. Paret, "Poisson solvers for self-consistent multiparticle simulations,"
lefA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, March 18-22, 2013.

## Green Function Solution of Poisson's Equation (I) (open boundary conditions)

$$
\begin{gathered}
\phi(r)=\int G\left(r, r^{\prime}\right) \rho\left(r^{\prime}\right) d r^{\prime} \quad ; r=(x, y, z) \\
\left(r_{i}\right)=h_{i^{\prime}=1}^{N} G\left(\begin{array}{ll}
r_{i} & \left.r_{i^{\prime}}\right)\left(r_{i^{\prime}}\right) \\
G(x, y, z)=1 / \sqrt{\left(x^{2}+y^{2}+z^{2}\right)}
\end{array}\right.
\end{gathered}
$$

Direct summation of the convolution scales as $\mathrm{N}^{2}!!!!$

## N - total number of grid points

FFT based Hockney's Algorithm /zero padding:- scales as $(2 N) \log (2 N)$

- Ref: Hockney and Easwood, Computer Simulation using Particles, McGraw-Hill Book Company, New York, 1985.

$$
\begin{aligned}
& c\left(r_{i}\right)=h^{2 N} G_{c}\left(r_{i} \quad r_{i^{\prime}}\right) c\left(r_{i^{\prime}}\right) \\
& \left(r_{i}\right)=c^{\prime}\left(r_{i}\right) \text { for } \mathrm{i}=1, \mathrm{~N}
\end{aligned}
$$

## Integrated Green Function Method（II）

 （large aspect ratio beam with open boundary conditions）$$
\begin{array}{cc}
c\left(r_{i}\right)={ }_{i^{\prime}=1}^{2 N} G_{i}\left(r_{i}\right. & \left.r_{i^{\prime}}\right){ }_{c}\left(r_{i^{\prime}}\right) \\
\underbrace{G_{i}\left(r, r^{\prime}\right)=\circ G_{s}\left(r, r^{\prime}\right) d r^{\prime}}_{\text {integrated Green function }} & G_{\text {standard Green function }}^{G_{s}(x, y, z)=1 / \sqrt{\left(x^{2}+y^{2}+z^{2}\right)}}
\end{array}
$$

integrated Green function

Integrated Green＇s function is needed for modeling large aspect ratio beams！

```
(O(N log N))
```

Comparison between the IG and SG


## 3D Poisson Solver with Transverse Rectangular Pipe (f) (Spectral-Finite Difference Method)

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=-\frac{\rho}{\epsilon_{0}}
$$

with boundary conditions

$$
\begin{gathered}
\phi(x=0, y, z)=0 \\
\phi(x=a, y, z)=0 \\
\phi(x, y=0, z)=0 \\
\phi(x, y=b, z)=0 \\
\phi(x, y, z= \pm \infty)=0 \\
\rho(x, y, z)=\sum_{l=1}^{N_{l}} \sum_{m=1}^{N_{m}} \rho^{l m}(z) \sin \left(\alpha_{l} x\right) \sin \left(\beta_{m} y\right), \\
\phi(x, y, z)=\sum_{l=1}^{N_{l}} \sum_{m=1}^{N_{m}} \phi^{l m}(z) \sin \left(\alpha_{l} x\right) \sin \left(\beta_{m} y\right)
\end{gathered}
$$

where

$$
\begin{aligned}
\rho^{l m}(z) & =\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} \rho(x, y, z) \sin \left(\alpha_{l} x\right) \sin \left(\beta_{m} y\right) \\
\phi^{l m}(z) & =\frac{4}{a b} \int_{0}^{a} \int_{0}^{b} \phi(x, y, z) \sin \left(\alpha_{l} x\right) \sin \left(\beta_{m} y\right)
\end{aligned}
$$

J. Qiang, and R. Ryne, Comput. Phys. Comm. 138, p. 18 (2001).

$$
\begin{aligned}
& \frac{\partial^{2} \phi^{l m}(z)}{\partial z^{2}}-\gamma_{l m}^{2} \phi^{l m}(z)=-\frac{\rho^{l m}(z)}{\epsilon_{0}} \\
& \frac{\phi_{n+1}^{l m}-2 \phi_{n}^{l m}+\phi_{n-1}^{l m}}{h_{z}^{2}}-\gamma_{l m}^{2} \phi_{n}^{l m}=-\frac{\rho_{n}^{l m}}{\epsilon_{0}} \\
& \phi_{-1}^{l m}=\exp \left(-\gamma_{l m} h_{z}\right) \phi_{0}^{l m}, \quad n=0 \\
& \phi_{N+1}^{l m}=\exp \left(-\gamma_{l m} h_{z}\right) \phi_{N}^{l m}, \quad n=N
\end{aligned}
$$

Numerical Solutions vs. Analytical Solutions


## 3D Poisson Solver with Transverse Rectangular Pipe (IIt)

 (Spectral-Green Function Method and 3D Spectral Method)$$
\frac{\partial^{2} \phi^{l m}(z)}{\partial z^{2}}-\gamma_{l m}^{2} \phi^{l m}(z)=-\frac{\rho^{l m}(z)}{\epsilon_{0}}
$$

Green function method:

- efficiently handle long bunch
spectral method:
-reduce numerical noise with filtering in frequency domain

$$
\begin{aligned}
& \phi^{l m}(z)=\frac{-1}{2 \gamma_{l m} \varepsilon_{0}} \int \exp \left(-\gamma_{l m}\left|z-z^{\prime}\right|\right) \rho^{l m}\left(z^{\prime}\right) d z^{\prime} \\
& \phi^{l m}(z)=\frac{-1}{2 \gamma_{l m} \varepsilon_{0}} \sum_{j} \rho^{l m}\left(z_{j}^{\prime}\right) G\left(z-z_{j}^{\prime}\right) \\
& G\left(z-z^{\prime}\right)=\int_{z^{\prime}-h / 2}^{z^{\prime}+h / 2} \exp \left(-\gamma_{l n}|z-t|\right) d t \\
& \phi^{l m}(z)=\sum_{n} \phi_{n}^{l m} H_{n}(z) ; \rho^{l m}(z)=\sum_{n} \rho_{n}^{l m} H_{n}(z)
\end{aligned}
$$

Hermite polynomial $H_{n}: \int_{-\infty}^{\infty} H_{n}(z) H_{m}(z) d z=2^{n} n!\sqrt{\pi} \delta_{m n}$

$$
\frac{1}{4} \phi_{n-2}^{l m}-\left(\frac{1}{2}(2 n+1)+\gamma_{l m}^{2}\right) \phi_{n}^{l m}+(n+2)(n+1) \phi_{n+2}^{l m}=A^{2} \rho_{n}^{l m}
$$

## 3D Poisson Solver with Transverse Rectangular Pipe (ItI)

 (Green Function Method)$$
\begin{gathered}
G\left(x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right)=\frac{1}{2 \pi a b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\kappa_{m n}} \sin \frac{m \pi x}{a} \sin \frac{m \pi x^{\prime}}{a} \sin \frac{n \pi y}{b} \sin \frac{n \pi y^{\prime}}{b} e^{-\kappa_{m n}\left|z-z^{\prime}\right|}, \\
G=\begin{aligned}
& G\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)-R\left(x-x^{\prime}, y+y^{\prime}, z-z^{\prime}\right) \\
&-R\left(x+x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)+R\left(x+x^{\prime}, y+y^{\prime}, z-z^{\prime}\right), \\
& R(u, v, w)=\frac{1}{2 \pi a b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\kappa_{m n}} \cos \frac{m \pi u}{a} \cos \frac{n \pi v}{b} e^{-\kappa_{m n}|w|} . \\
& \phi_{i, j, k} /\left(h_{x} h_{y} h_{z}\right)= \\
& \mathcal{F}^{b b b}\left\{\left(\mathcal{F}^{f f f} \rho_{i, j, k}\right)\left(\mathcal{F}^{f f f} R_{i, j, k}\right)\right\}-\mathcal{F}^{b f b}\left\{\left(\mathcal{F}^{f f f} \rho_{i, j, k}\right)\left(\mathcal{F}^{f b f} R_{i, j, k}\right)\right\} \\
&-\mathcal{F}^{f b b}\left\{\left(\mathcal{F}^{f f f} \rho_{i, j, k}\right)\left(\mathcal{F}^{b f f} R_{i, j, k}\right)\right\}+\mathcal{F}^{f f b}\left\{\left(\mathcal{F}^{f f f} \rho_{i, j, k}\right)\left(\mathcal{F}^{b b f} R_{i, j, k}\right)\right\}
\end{aligned} \\
g_{z}=\frac{1}{h_{z}^{2}} \int_{z_{k}}^{z_{k+1}} d z^{\prime}\left[\rho_{k}\left(h_{z}-\left(z^{\prime}-z_{k}\right)\right)+\rho_{k+1}\left(z^{\prime}-z_{k}\right)\right] e^{-\kappa_{m n}\left|z-z^{\prime}\right|} . \\
R_{i n t}(u, v, w)=\frac{1}{2 \pi a b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\kappa_{m n}} \cos \frac{m \pi u}{a} \cos \frac{n \pi v}{b} g_{z}(w) . \\
g_{z}(w)=\frac{1}{h_{z}^{2} \kappa_{m n}^{2}}\left[2 h_{z} \kappa_{m n} \delta_{w, 0}+\left(e^{-\kappa_{m n}\left|w+h_{z}\right|}-2 e^{-\kappa_{m n}|w|}+e^{-\kappa_{m n}\left|w-h_{z}\right|}\right)\right],
\end{gathered}
$$

Pro: computational domain needs to contain only the beam itself.
Con: more numerical operations for Green function evaluation.

## SIS－18 Benchmark



## PARAMETERS for setps 1－6

```
Lattice SIS18
Strength of the sextupole (when used) K}\mp@subsup{\textrm{K}}{2}{}=0.2\mp@subsup{\textrm{m}}{}{-2
Maximum tuneshift }\Delta\mp@subsup{Q}{\textrm{x}}{=}=0.
Horizontal transverse size (mms) }\quad\mp@subsup{X}{\mathrm{ rms }}{}=5\textrm{mm
Vertical transverse size (rms) , Yrms =5 mm
Longitudinal size (mms) }\quad\mp@subsup{\textrm{Z}}{\mathrm{ rms }}{}=40.35\textrm{m
Horizontal emittance (2 \sigma) }\quad\mp@subsup{\varepsilon}{\textrm{x}}{}=12.57\textrm{mm mrad
Vertical emittance (2 \sigma) 的 = 9.30 mm mrad
Tums for 1 synchrotron oscillation N}\mp@subsup{\textrm{N}}{\mathrm{ synch }}{}=1500
```



```
Kinetik energy
    E
Gamma transition
    \gamma}=
momentum spread at 3\sigmaz
    \Deltap/p=2.5 x 10-4
```


## Benchmark Step 1: Single Particle Phase Space

$$
\mathrm{Qx}=4.338, \mathrm{Qy}=3.2
$$




All three codes show very close phase space topology.
LAWRENCE BERKELEY NATIUNAL LABGRATIRYE


## PARAMETERS for setps 7-8

## Lattice SIS18

Strength of the sextupole (when used) $K_{2}=0.2 \mathrm{~m}^{-2}$
Maximum tuneshift $\Delta \mathrm{Q}_{\mathrm{x}}=0.1$
Horizontal transverse size ( ms ) $\quad \mathrm{X}_{\text {rms }}=5 \mathrm{~mm}$
Vertical transverse size (rms) $\quad \mathrm{Y}_{\text {rms }}=5 \mathrm{~mm}$
Longitudinal size (ms) $\quad Z_{\text {mss }}=2.69 \mathrm{~m}$
Horizontal emittance (2 $\sigma$ ) $\quad \varepsilon_{\mathrm{x}}=12.57 \mathrm{~mm}$ mrad
Vertical emittance ( $2 \sigma$ ) $\quad \varepsilon_{\mathrm{y}}=9.30 \mathrm{~mm} \mathrm{mrad}$
Tums for 1 synchrotron oscillation $\mathrm{N}_{\text {synch }}=1000$
Bunch length $\left(4 \sigma_{2}\right) \quad \tau=231.51 \mathrm{~ns}$
Kinetik energy
Gamma transition $\mathrm{E}_{\mathrm{k}}=11.4 \mathrm{MeV} / \mathrm{u}$
$\gamma_{t}=5$
momentum spread at $3 \sigma_{z}$
$\Delta \mathrm{p} / \mathrm{p}=2.5 \times 10^{-4}$
Parameters for step 9:

- $\mathrm{Qx}=4.3604, \mathrm{Qy}=3.2$
- RF cavity voltage: 152 V
- RF frequency: 0.214456 MHz
- X aperture : 40 cm
- Y aperture: 30 cm


## Generate Initial Matched Beam Distribution

(Normal Form Transformation)
For a given particle phase space coordinate: $\xi=\left(x, p_{x}, y, p_{y,} z, p_{z}\right)^{T}$
after one turn through the ring $\quad \xi^{n+1}=M \xi^{n} \quad$ where $M$ is the one-turn transfer matrix


For an envelope matched beam: $\quad \Sigma^{n}=M \Sigma^{n} M^{T}$

$$
\begin{gathered}
\text { Let: } \quad M=A N A^{-1} \text { where } N \text { is the normal form matrix } \\
\left(A^{-1} \Sigma^{n} A^{-T}\right)=N\left(A^{-1} \Sigma^{n} A^{-T}\right) N^{T}
\end{gathered}
$$

For the given emittances in the phase space coordinate, one can find the corresponding emittances in the normal coordinates to generate a matched beam distribution.

Evolution of RMS Beam Sizes with the Initial Matched Distribution (no space-charge)



## Numerical Test of Convergence: Evolution of RMS Beam Emittances (1 (with space-charge) <br> 



Numerical Test of Convergence: Evolution of RMS Beam Emittances (II) (with space-charge)


Transverse


Longitudinal


## Evolution of RMS Beam Emittances: Different Beam Intensityrromp

 $\omega_{\omega^{2}}^{\omega^{2}}$


Synch. osc.




LAWRENCE BERKELEY NATIロNAL LABDRATロRY

Physical parameters：
RF frequency $=3.5 \mathrm{MHz}$
RF voltage $=27 \mathrm{kV}$
$\mathrm{Ek}=1.4 \mathrm{GeV}$
Emit＿x $=7.5 \mathrm{~mm}-\mathrm{mrad}$
Emit＿y $=2.5 \mathrm{~mm}-\mathrm{mrad}$
Rms bunch length $=45 \mathrm{~ns}$
Rms dp／p $=1.7 \times 10^{-3}$
Horizontal tune：6．15－6．245
Vertical tune： 6.21
Synchrotron period： 1.5 ms
Half Aperture $=7 \mathrm{~cm} \times 3.5 \mathrm{~cm}$
$\mathrm{I}=1.0 \times 10^{12}$

Refs：B．W．Montague，CERN－Report No．68－38，CERN， 1968.
E．Metral et al．，Proc．of EPAC 2004，p． 1894.
I．Hofmann et al．，Proc．of EPAC 2004，p． 1960.

## Evolution of Transverse RMS Emittances: Different Tunes

measurements


Simulation


# Thank You for Your Attention! 

