

ELENA

Space Charge Collaboration Meeting 2014

CERN, 20th May 2014

C.Carli on behalf of the AD/ELENA team(s)

- Introduction
- ELENA Overview and Layout
- Some of the Most Salient Features
- ELENA Lattice
- Conclusions, Status and Outlook

Introduction

ELENA

Present Antiproton operation with the AD

Introduction

ELENA

Efficiency for users without and with ELENA

ELENA Overview and Layout

- Deceleration of antiprotons from 5.3 MeV to 100 keV to improve efficiency of experiments
- Size a factor ~10³ smaller than LHC, kinetic energy of beams for physics factor ~10⁸ lower than LHC Circumference 30.4 m or 1/6 the one of the AD (.. 4 times the size of the first proposal in 1982!)
 - \Box Allows installing all equipment required without particular efforts to gain space
 - \Box Fits in the available space inside the AD hall
 - \Box Lowest average field (beam rigidity over average radius) $B\rho/R = 94$ G smaller than for AD 115 G

ELENA

ELENA Overview and Layout

ELENA in AD hall with new experimental area for Gbar and, possibly, another experiment:
 Cost effective with short transfer line from AD and no relocation of existing experiments
 New (small) building to house equipment now at location, where ELENA will be installed

ELENA

ELENA Overview and Layout

ELENA

Some of the most Salient Features

- Machine operated at an unusually low energy for a synchrotron (down to 100 keV!)
- Expected main performance limitation: Intra Beam Scattering (IBS, see later)
 - Determines equilibrium emittances together with electron cooling
- Rest gas interactions: stringent requirements 3 10⁻¹² Torr nominal pressure
- Beam diagnostics with very low intensities and energy
 - $\hfill\square$ Beam currents down to well below 1 μA (far beyond reach standard slow BCTs)
 - □ Intensity of coasting beam measured with Schottky diagnostics
- Electron cooling at very low energies .. essential ingredient for concept
 - Bunched beam cooling to obtain acceptable momentum spread of short extracted bunches
- Magnets with very low fields
 - □ "Thinning" (mixing of stainless steel and magnetic laminations) for bending magnets and probably for other small magnets
 - Mitigate remanence effects and impact on field quality for quadrupoles, sextupoles ... ?
 - Careful magnetic measurement with pre-series magnets ("thinning" as well for other magnets?)
- Electrostatic transfer lines to experiments
 - □ Cost effective at very low energies, easier for shielding against magnetic stray fields
- RF system with modest voltages, but very large dynamic range
- Direct space charge defocusing a possible limitation despite very low intensity
- Commissioning with external H⁻ and proton source (and electrostatic acceleration to 100 keV)

ELENA

ELENA Lattice and Space Charge

- Challenges (usual for low small rings) for lattice design and optics
 - □ Many constraints and few "free parameters" (quadrupole strengths)
 - Suitable tunes, acceptances, beam transfers, long straight with small dispersion for cooler ..
 - Geometry in AD hall many geometries and quadrupole locations investigated
- Baseline lattice: hexagonal shape with two periods and two long straights (for cooler and injection)
 - Tunes: $Q_X \approx 2.3$, $Q_Y \approx 1.3$ (e.g. $Q_X = 2.23$, $Q_Y = 1.23$)
- Acceptances: about 75 µm depending on working point (Maximum expected emittances plus some margin for reserve)
- Space Charge
 - □ One short (rms length 75 ns requested by experiments) bright (rms emittance ~1 µm) bunch would give $\Delta Q \approx -0.4$
 - Mitigation: several (baseline four)
 bunches sent to different experiments
 - Resulting longer beam periods considered an advantage despite lower intensity
 - No plans for simulations studies so far (will not impact design, may-be later)

Space Charge Collaboration Meeting, CERN, 20th May 2014

ELENA

Conclusions, Status and Outlook

- ELENA will be a small ring to further decelerate antiprotons from the AD
 - □ Electron cooler to reduce beam emittances and, thus, sizes and energy spread
 - □ Improvement for existing experiments and new types of experiments (e.g. gravitation)
 - \square Space charge significant despite low intensity (few 10⁷) with short dense bunches
 - Mitigated by splitting (well received) into several bunches sent to several experiments
 - So far no plans for simulation studies, but possibly later
- ELENA Machine to be built well known now
 - □ General Project Review on 14th and 15th October
 - Concept of decelerator with electron cooling endorsed, no showstoppers identified
 - Many proposals to improve (Tunability for working point, "thinning" of small magnets ..)
 - □ Technical Design Report TDR describing machine published
- Outlook
 - □ Adjacent building 393 completed, infrastructure installation going on
 - □ First call for tenders for equipments (magnets ...) ongoing
 - \square ELENA installation in 2nd half of 2015 and beginning 2016 followed by commissioning
 - □ Transfer line installation followed by commissioning during 1st half 2017
 - □ First physics run with 100 keV antiprotons from ELENA planned for 2nd half of 2017

ELENA

ELENA

Basic ELENA Parameters

Parameter	Value	Comment		
Basic shape	Hexagonal	two long straights for injection and cooling		
Periodicity	Two periods	neglecting the electron cooler		
Circumference	30.4055 m	1/6 the AD		
Max. beta functions $\beta_{H,max} / \beta_{V,max}$	≈12 m/≈ 6m			
Working point Q_H/Q_V	≈2.3/≈1.3	some tuning range to choose working point		
Relativistic gamma at transition	≈2			
Energy range	5.3 MeV – 100 keV			
Momentum range	100 MeV/c – 13.7 MeV/c			
Transverse acceptances	75 µm			
Cycle length	>25 s	deceleration and cooling		
Repetition rate for pbar	~100 c	limited by AD operation		
operation	~100 5			
Injected intensity	3 10 ⁷ antiprotons			
Efficiency	60%	conservative guess		
Parameter at ejection		with bunched beam cooling		
Number of bunches	4	baseline with four bunches		
Bunch population	0.45 10 ⁷ pbars			
Rel. mom. spread	0.5 10 ⁻³	Rms value		
Bunch length	75 ns	Rms value		
Hor. emittance	1.2 μm	Rms, physical		
Vert. emittance	0.75 μm	Rms, physical		

ELENA

Basic ELENA Parameters

Present best Guess for beam parameters combining different Sources

Step in cycle	$\epsilon_{\rm L}$ (meVs)	σ _p /p (10 ⁻³)	σ _E (keV)	σ _T (ns)	ε _{H,rms} (μm)	ε _{v,rms} (μm)
Injection ^{+,a)}	3.5	0.25	2.8	98	0.5	0.3
Start 1 st ramp ^{+,b)}	3.5	0.49	5	53	0.5	0.3
End 1 st ramp ^{c)}	3.5	1.4	1.8	150	1.8	1.1
Start plateau 35 MeV/c^{d}	5.2	0.46	0.6	coasting	1.8	1.1
End plateau 35 $MeV/c^{e)}$	1.7	0.15	0.20	coasting	0.45	0.42
Start 2 nd ramp ^{d)}	2.5	0.84	1.1	180	0.45	0.42
End 2 nd ramp ^{c)}	2.4	2.1	0.42	455	2.2	2.5
Start plateau 100 keV ^{d)}	3.2	0.46	.092	coasting	2.2	2.5
Cooled coasting 100 keV ^{e)}	1.1	0.25	.050	coasting	0.3	0.2
Cooled bunched 100 keV ^f	4 x 0.12	0.60	.120	75	1.2	0.75

 $\epsilon_{\rm rms} = \sigma_{\beta}^2 / \beta_{\rm T}$ with σ_{β} the rms betatron beam size and $\beta_{\rm T}$ the Twiss betatron function

+) difficult to determine due to (i) dense core and long tails, (ii) variations with time

a) Typical values measured with AD - some reduction of long. Emittance with bunched beam cooling

b) Increase of voltage from 16 V at transfer to 100 V on ramp

c) Simulations of IBS on ramp

d) Debunching/bunching with 50% blow-up (bunched with LHC def. $\varepsilon_{\rm L} = 4\pi \sigma_{\rm E} \sigma_{\rm T}$, coasting $\varepsilon_{\rm L} = 4 (2/\pi)^{1/2} \sigma_{\rm E} T_{\rm rev}$)

e) From ELENA technical meetings with presentations by G.Tranquille and P. Beloshitsky

ELENA