Synergia: Release and Benchmarking

James Amundson, Leo Michelotti and Eric Stern

Fermilab

May 20, 2014

The ComPASS Project

The ComPASS Project is funded by the US DOE's SciDAC program

James Amundson, Leo Michelotti and Eric Stern

Synergia: Release and Benchmarking

CF Fermilab

 $^{1}/_{22}$

Synergia

- Accelerator simulation package
 - independent-particle physics
 - $\circ~$ collective effects
- Designed for range of computing resources
 - $\circ~$ laptops, desktops, clusters and supercomputers
 - scales to over 100,000 cores
- Open source
 - We welcome collaborators
- Developed and maintained by the Accelerator Simulation group in Fermilab's Scientific Computing Division
 - James Amundson, Paul Lebrun, Qiming Lu, Alex Macridin, Leo Michelotti (CHEF), Chong Shik Park, Panagiotis Spentzouris and Eric Stern

General information:

https://web.fnal.gov/sites/synergia/

Source code, etc.:

https://cdcvs.fnal.gov/redmine/projects/synergia2

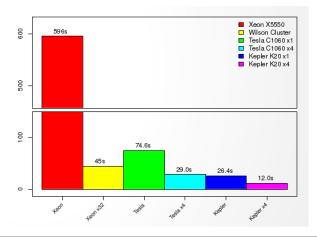
Synergia Physics

- Single-particle physics are provided by CHEF
 - $\circ~$ details later in talk
- Apertures
- Collective effects (single and multiple bunches)
 - \circ space charge (3D, 2.5D, semi-analytic, multiple boundary conditions)
 - $\circ~$ wake fields

• can accommodate arbitrary wake functions

• electron cloud (proof of principle only)

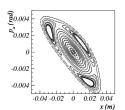
- Space charge
 - · 3D open transverse boundary conditions
 - · Hockney algorithm, open or periodic longitudinally
 - $\circ~$ 3D conducting rectangular transverse boundary
 - periodic longitudinally
 - $\circ~$ 3D conducting circular transverse boundary
 - periodic longitudinally
 - $\circ~$ 2.5D open boundary conditions
 - 2D calculation, scaled by density in longitudinal slices
 - 2D semi-analytic
 - uses Bassetti-Erskine formula, $\sigma {\rm s}$ calculated on the fly
 - $\circ~$ New space charge models can be implemented by the end user

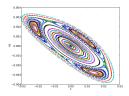

Synergia 2.1.0 General Release

- Ready for end-users
- Manual
 - $\circ~$ Updating for MadX input
- Source release
- Binaries
 - ° SL6
 - Ubuntu (?)
 - Willing to consider requests
- End of May

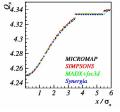
Upcoming features for Synergia 2.2

- SIMD vectorization optimizations
 - $\circ~$ 2x 8x+ speed improvement for particle propagation
- Production-ready GPU support
 - Probably Intel Phi (MIC) also
 - $\circ~$ 100+ core performance from a few GPUs

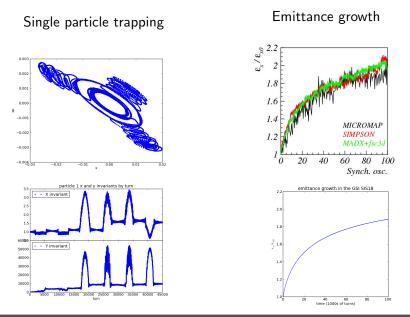

Space Charge Trapping Benchmark (recap and update)


- Space charge trapping benchmark in GSI SIS18
 - http://web-docs.gsi.de/~giuliano/research_activity/ trapping_benchmarking/main.html
- The aim of the code benchmarking is to confirm the space charge induced trapping of particles in a bunch during long term storage.

Benchmark phase space

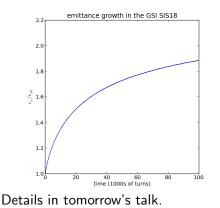

Synergia phase space

Tune vs. displacement



22

SIS18 Benchmarking: Successful Conclusion



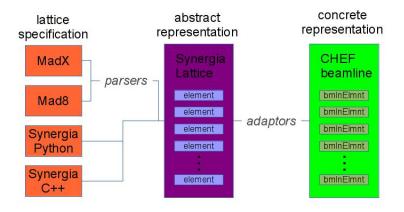
James Amundson, Leo Michelotti and Eric Stern

Synergia: Release and Benchmarking

/ 22

A Very Large PIC Simulation (VLPS)

- 100,000 turns
- 71 steps/turn
- 7,100,000 steps
- 4,194,304 particles
- 29,779,558,400,000 particle-steps
- 1,238,158,540,800,000 calls to drift
 - Yes, that's over a quadrillion


Synergia and MadX

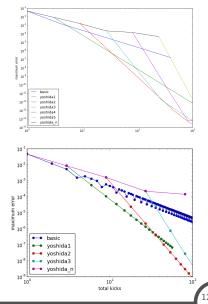
Detailed comparision of single-particle physics in Synergia and Madx

James Amundson, Leo Michelotti and Eric Stern Synergia: Release and Benchmarking

Lattices

James Amundson, Leo Michelotti and Eric Stern Synergia: Release and Benchmarking

CHEF


Two fundamental concepts in CHEF:

- Propagation and map analysis are fundamentally linked
 - The same code is used
 - $\bullet \ \ {\rm Utilizes} \ C++ \ {\rm templates}$
- CHEF Propagators provide a separation between propagators and geometry
 - $\circ~$ Physical model for each element can be changed
- Basic CHEF model
 - \circ exact drift
 - \circ exact dipole
 - $\circ~$ thin linear/nonlinear elements
 - including cavities, septa, monitors, etc., ...
 - $\circ~$ thick elements are {drift, thin} elements
 - {} denotes sandwiching
- Bends in CHEF
 - $\circ~$ simple bends: rbend, sbend
 - $\bullet \ \ \mathsf{sbend} = \mathsf{edge} \ \mathsf{physics} + \mathsf{dipole} + \mathsf{edge} \ \mathsf{physics}$
 - $\bullet \ \ \mathsf{rbend} = \mathsf{edge} \ \mathsf{physics} + \mathsf{dipole} + \mathsf{edge} \ \mathsf{physics}$
 - $\circ~$ combined-function bends: CF_rbend, CF_sbend
 - + CF = edge physics + {dipole, thin elements} + edge physics

CHEF Propagator Example: Thick Quadrupole

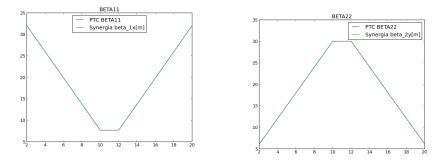
- CHEF defaults to 4 kicks per step
 - scheme is $\mathcal{O}(kL)^2$
 - Synergia used to default to 10 steps
- Yoshida arbitrary-order symplectic propagator
 - \circ yoshida*n* is $\mathcal{O}(kL)^{2n+2}$
 - Synergia now defaults to n = 2, 4 steps
- Can pick propagator and parameters at run time
 - Slow, accurate for map comparison
 - Fast, less accurate for tracking

Right: maximum fractional error for (exact) linear transfer matrix

22

Another CHEF Propagator: MADPropagator for CF_sbend

- Uses coefficients from tmsect.f90 a la Karl Brown
 - $\,\circ\,$ Unresolved issues with $x'(p_x/p_z)$ vs. p_x/p_0
 - $\,\circ\,$ Both MADX and CHEF use p_x/p_0
- Completely replaces the CF_sbend propagator, including edge effects


Propagation options in Synergia

- Direct use of Chef propagators: explicitly symplectic • We now use this most of the time
- Linear maps: fast, symplectic, no non-linear effects
- Higher-order polynomial maps: not as fast, non symplectic, as non-linear as you like
 - $\circ \ \ \, \text{Arbitrary order}$
 - We've done 15th
- User can choose which propagation method on an element-by-element basis

• FODO cell

Compare: generalized lattice functions (Ripken) using MADX/PTC and Synergia

22

• Level of agreement is 10^{-12}

- FOBORODOBO32 Lattice
 - Circular, 32 cells, simple sbends
 - $\circ~$ single RF cavity
 - $\circ pc = 10 \text{GeV}$
- Tunes (Synergia and MadX/PTC agree in all digits)
 - 0.603237761759 horizontal
 - 0.406213097186 vertical
- Chromaticity (Synergia and MadX/PTC agree in all digits)
 - · -8.711359806 horizontal
 - -8.845639121 vertical
- We conclude that we have excellent agreement between Synergia and MadX/PTC up to and including simple bends and RF cavities

- KFOBORODOBO32 Lattice
 - Circular, 32 cells, simple sbends
 - $\circ~$ single RF cavitiy
 - kicker
 - $\circ~$ closed orbit not on zero
 - \circ pc = 10GeV
- Tunes (Synergia and MadX/PTC agree in all digits)
 - 0.60886826 horizontal
 - 0.40920237 vertical
- Chromaticity (Synergia and MadX/PTC agree in all digits)
 - · -8.823397 horizontal
 - -8.884926 vertical
- Level of agreement is 10^{-6} in generalized lattice functions

- cfoboobos Lattice
 - $\circ~$ small lattice with combined function bends
 - magnifies issues

	h tune	h chrom
MADX-TWISS	2.541568195	0.5479383116
PTC-TWISS exact	0.5415681988	0.5479398011
PTC-TWISS inexact	0.5415681953	-2.800058545
Synergia/CHEF	0.5415665456	-2.2344878752
CHEF-MADlike-propagat	0.5415681953	0.5476584165
MADX-TWISS PTC-TWISS exact PTC-TWISS inexact Synergia/CHEF CHEF-MADlike-propagat	v tune 1.680780993 0.6807809971 0.6807809935 0.680780711 0.6807809935	v chrom -2.066730709 -2.066732481 -1.971674502 -1.6762177921 -1.2080765643

• Vertical chromaticity remains a mystery

• Replace combined function bending magnets with "Talman Sandwich" of 4 quadrupole kicks and pure sbends

	h tune	h chrom
PTC-TWISS exact	0.5381759729	-2.225755063
Synergia/CHEF	0.5381759729	-2.225755063
	v tune	v chrom
PTC-TWISS exact	v tune 0.6799606984	v chrom -2.064893011

• There are still issues we do not understand

Optics comparison: PS Lattice

• PS

 $\circ~$ has combined function magnets

Tunes

- 0.2532 horizontal (Synergia)
- \circ 0.2533 horizontal (MadX/PTC)
- 0.3044 vertical (Synergia)
- 0.3044 vertical (MadX/PTC)
- Chromaticity
 - -6.17 horizontal (Synergia)
 - -5.43 horizontal (MadX/PTC)
 - -7.15 vertical (Synergia)
 - \circ -7.02 vertical (MadX/PTC)
- closed orbit agrees at the $\mathcal{O}(10^{-3})$ level or better

Optics comparison: PSB Lattice

PSB

 $\circ~$ has quadrupoles with edge effects

 $\bullet\,$ implemented in CHEF, but not yet tested or turned on

Tunes

- 0.269999988062 horizontal (Synergia)
- 0.269999988062 horizontal (MadX/PTC)
- 0.420000013576 vertical (Synergia)
- \circ 0.420000013576 vertical (MadX/PTC)
- Chromaticity
 - -3.462330788 horizontal (Synergia)
 - -3.462330788 horizontal (MadX/PTC)
 - -7.248121275 vertical (Synergia)
 - \circ -7.248121275 vertical (MadX/PTC)
- individual lattice functions show surprisingly large discrepancies

Conclusions

- Synergia 2.1.0 release slated for end of month
- Space charge trapping benchmark completed • including VLPS
- Synergia/CHEF can reasaonably reproduce MadX/PTC optics, but unresolved issues remain

