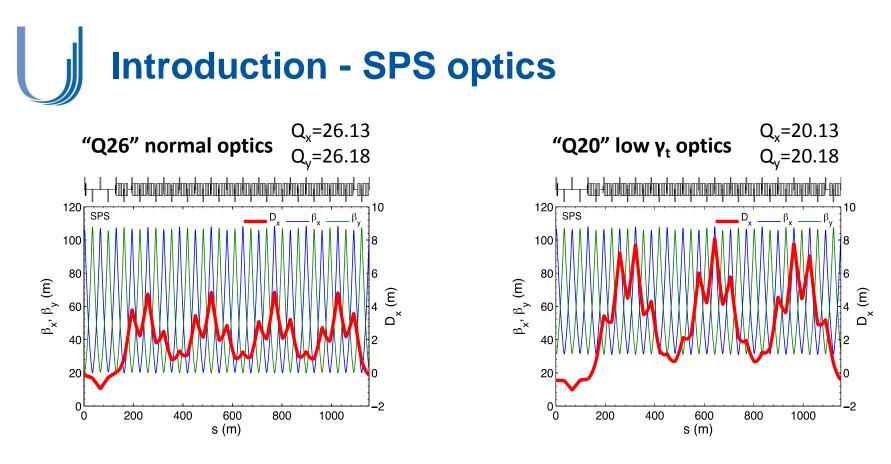
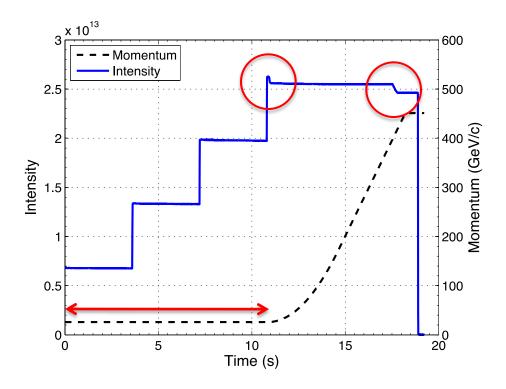


LHC Injectors Upgrade

Space charge in the SPS


H. Bartosik, A. Oeftiger, Y. Papaphilippou, G. Rumolo, F. Schmidt and all members of LIU-SPS and OP crew

- Introduction
- Achieved beam parameters in 2012
- LIU target beam parameters
- Experimental studies with high brightness beams
- Space charge and machine modeling aspects
- Summary and conclusions

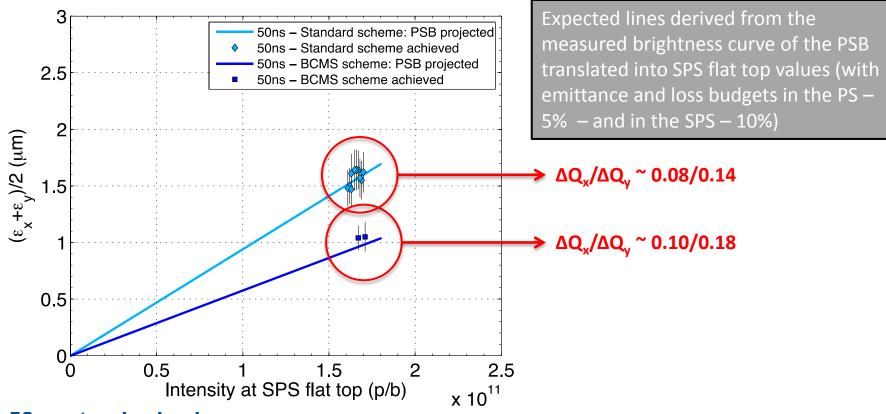

- Q20 optics with low gamma transition developed to increase instability thresholds
 - Lowering SPS working point by 6 units: from "Q26" \rightarrow "Q20" (γ_t =22.8 \rightarrow γ_t =18)
 - Q20 is the default optics configuration for LHC beams since September 2012

Implications for space charge

- Higher synchrotron tune (almost factor 3 higher at injection)
- Larger dispersion → smaller space charge tune spread

Introduction - SPS cycle for LHC beam

- Long injection plateau (10.8s)
 - 4 injections, 26 GeV/c
 - Maybe even longer in case of BCMS beam


Budget for total losses: 10%

- Losses at start of acceleration ~3-5%
- Scraping at flat top ~3%
- Budget for emittance growth: 10%
 - Small optics mismatch at injection
 - Avoid different emittance per batch

 \Rightarrow Need to preserve high brightness for >10s with ΔQ >0.2 with "practically no degradation"

2012 beam parameters – 50 ns beam

- 50ns standard scheme
 - Regularly used to fill LHC at 2012 PS intensity limit

• 50ns Batch-Compression-Merging-and-Splitting (BCMS) high brightness scheme

• Beam sent to the LHC once to check emittance preservation and luminosity gain in LHC

LIU target beam parameters

Main LIU upgrades

- Double the PSB brightness thanks to injection at 160 MeV using H⁻ from Linac4
- Raise the PS injection energy to 2 GeV for higher brightness in the PS
- SPS RF upgrade for higher intensity, electron cloud mitigation

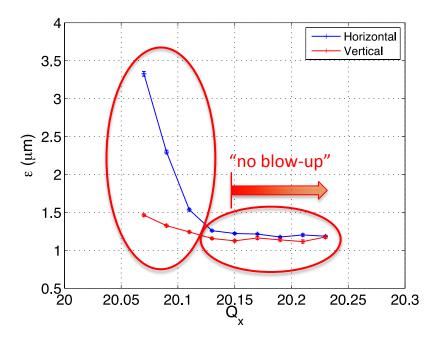
Baseline scenario: 25 ns

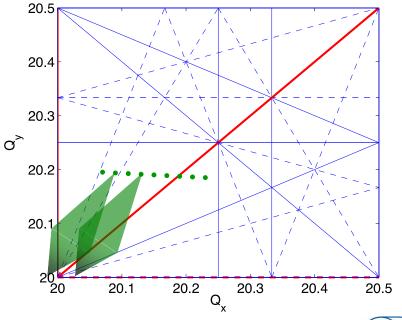
SP	S, 25 ns	N (10 ¹¹ p/b)	ε _{x,y} (μm)	ΔQ _{x,y}		
	standard	2.22	1.71	(0.09, 0.16)		
LIU	BCMS	2.22	1.25	(0.12, 0.21)	present SPS record	
н	IL-HLC	2.57	1.89	(0.10, 0.17)	51512010	

• Fallback scenario in case of problems with electron cloud in the LHC: 50 ns

SPS, 50 ns		N (10 ¹¹ p/b)	ε _{x,y} (μm)	ΔQ _{x,y}
LIU	standard	3.00	1.77	(0.13, 0.21)
	BCMS	3.00	1.77	(0.13, 0.21)
HL-HLC		4.09	2.27	(0.14, 0.24)

to be studied ...

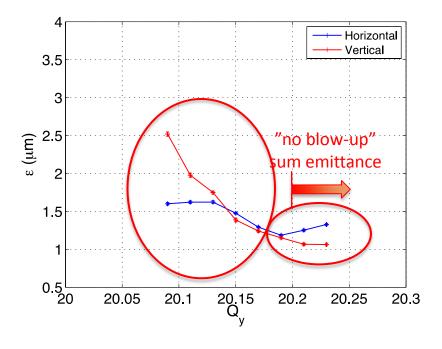


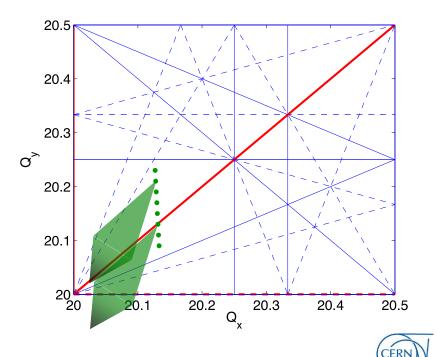

Experimental tune scan - horizontal

- High brightness 50ns BCMS beam
 - $N = 1.95 \times 10^{11} \text{ p/b}$ (at injection)
 - ε ~ 1.15µm
 - Transmission up to flat top around 94% without scraping (very small losses on flat bottom)

 $\Delta Q_x / \Delta Q_y \simeq 0.10 / 0.18$

• Emittance measurement at the end of flat bottom





- High brightness 50ns BCMS beam
 - $N = 1.95 \times 10^{11} \text{ p/b}$ (at injection)
 - ε ~ 1.15µm
 - Transmission up to flat top around 94% without scraping (very small losses on flat bottom)

 $\Delta Q_x / \Delta Q_y \simeq 0.10 / 0.18$

· Emittance measurement at the end of flat bottom

Future experimental studies

Further explore the tune diagram

- Optimize working point for beams with very high brightness ("pure batch compression scheme")
- Study effect of resonances in strong space charge regime
- Determine maximum tune shift acceptable in the SPS within emittance growth and loss budgets
- Interplay with resonances excited in a controlled way for code benchmarking
 - Further development of machine model (nonlinearities)
- Interplay of space charge with other collective effects
 - Impedance \rightarrow transverse mode coupling instability
 - Electron cloud

Q20/26 split tune optics

• Slight reduction of space charge tune shift compared to Q20 optics

Modeling aspects and challenges

• High energy (26 GeV) and short bunch length

- Complete 3D field calculation not necessary \rightarrow slice approach should be ok

Slice-by-slice approach is needed

- To handle cases with intra-bunch motion
- Large dispersion in the SPS results in significant horizontal beam size variation along the bunch
- Approach of projecting the transverse bunch distribution to one slice and weighting the kicks with the longitudinal density can lead to numerical artifacts

Beam size is small compared to vacuum chambers

- Computationally heavy to include boundary conditions in the field calculations as large number of bins needed → presently only direct space charge considered
- Furthermore, many different types of vacuum chamber geometries in the SPS

• No measurements of magnetic field errors of SPS main magnets available

• Modeling will largely rely on beam based measurements

Strategy for SPS simulation studies

Use PTC-pyOrbit for studying fast phenomena (<= 10k turns)

- SPS simulations with PTC-pyOrbit presently being setup → Many thanks to J. Holmes and S. Cousineau for their support and quick reactions to questions!
- Slice-by-slice space charge calculation (as needed to deal with intra-bunch motion and beam size variation along the bunch) → first version developed and presently being tested
- Effect of beam surroundings (indirect space charge and impedance) to be treated at a single lumped location in the ring → to be developed

• Use (MADX) frozen space charge model for long term direct space charge effects

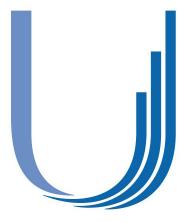
- SPS frozen space charge simulations presently being prepared
- Code needs to be extended to take into account the dispersion function in the initialization of the space charge kicks
- Slice-by-slice calculation will probably be difficult, but let's see ...

• Use PyHEADTAIL to study interplay with other collective effects

- Impedance (TMCI instability) and electron cloud
- Need to implement space charge module

Regime of strong space charge for future LHC beams in the SPS

- · Long storage time at injection energy for multiple injections from PS
- Tight budgets for losses and emittance blow-up
- Space charge tune shift of $\Delta Q_v = -0.21$ for baseline 25 ns scenario already demonstrated feasible
- Expected space charge tune shift of ΔQ_{y} = -0.24 for alternative 50 ns scenario to be studied


Experimental studies

- Tune scans performed in 2012 (BCMS beam) → achieved SPS record space charge tune shift
- Main goal of studies in 2014/15: determine maximum tune shift acceptable in the SPS within emittance growth and loss budgets
- Interplay of space charge and other collective effects

Space charge and machine modeling strategy

- Short term space charge effects with PTC-pyOrbit (slice-by-slice)
- Long term effects with MADX frozen space charge
- · Rely on beam based measurements for modeling of machine nonlinearities
- Interplay with other collective effects using PyHEADTAIL

LHC Injectors Upgrade

Thank you for your attention!

