(J)

LHC Injectors Upgrade

LHC Injectors Upgrade

LHC injectors upgrade Goals

"The LHC Injectors Upgrade should plan for delivering reliably to the LHC the beams required for reaching the goals of the HL-LHC. This includes LINAC4, the PS booster, the PS, the SPS, as well as the heavy ion chain..." (This is the mandate ... Upgrade of Brightness)

+ determine possible improvements for high intensity beams.

2012-2013 LHC - 26.7 km - 1380 bunches - 50 ns
__ = Field in main magnets

- = Proton beam intensity (current)
$\uparrow=$ Beam transfer

PS
SPS

PCB
4
1.2 seconds

Time

LHC25(50)ns Production Scheme as today

Production scheme:
a) Double batch injection from PSB ($\mathbf{4 + 2} \mathbf{~ b u n c h e s , ~} 6$ bunches for PS at h=7)
b) Up to 4 batches of 72 bunches each transferred to the SPS (288 bunches)

Transverse emittance produced in the PSB, longitudinal in the PS

Multiturn proton injection in PSB RF gymnastics in PS:

- Triple splitting
- Acceleration
- $2 \times$ Double splittings
- (1 Double splitting for 50 ns)
- Bunch rotation
>3 RF systems in PSB
>5 RF systems in PS
$5>2$ RF systems in SPS

[^0]
LHC 25(50)ns alternative Production (BCMS)

Production scheme:
a) Double batch injection from PSB ($4+4$ bunches, 8 bunches for PS at h=9)
b) Up to 5 batches of 48 bunches each transferred to the SPS (240 bunches)

Transverse emittance produced in the PSB, longitudinal in the PS

- Multiturn proton injection in PSB with shaving
- RF gymnastics in PS:
- Batch compression

$$
\begin{aligned}
& \mathrm{h}=9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \\
& \rightarrow 13 \rightarrow 14 \rightarrow 7 \rightarrow 21 \\
& \hline
\end{aligned}
$$

- Bunch merging
- Triple splitting
- Acceleration
- $2 \times$ Double splittings
(1 Double splitting for 50 ns)
- Bunch rotation

Schemes 25 ns	PSB - PS bunches	RF gym. in PS	RF gym. at injection	RF gym. at extraction	b/Train to SPS	SPS injections									
3-spitting (standard scheme)	$4+2$	/3 $7 / 2 / 2$	*\|											72	4
BCMS	$4+4$	+2C/3才/2/2		,	48	5									
BCS	$4+4$	C $7 / 2 / 2$			32	5									
$8 \mathrm{~b}+4 \mathrm{e}$	$4+2$	/2 $7 / 2 / 2$	* $\\|\\|\\|\\|\\|\\|\\|$		48	5									
'/ Splitting	C Batch	Compression	+ Merging	$\lambda A c$	eration	$\mathrm{GeV} / \mathrm{c}$									

Present and future performance @ SPS extraction (in terms of beam power for Neutrino beams)

	Operation		SPS record		After LIU (2020)	
					Aim	Study
	LHC	CNGS	LHC	CNGS	LHC	post-CNGS
SPS beam energy [GeV]	450	400	450	400	450	400
bunch spacing [ns]	50	5	25	5	25	5
bunch intensity/10 ${ }^{11}$	1.6	0.105	1.3	0.13	2.2	0.17
number of bunches	144	4200	288	4200	288	4200
SPS beam intensity/ 10^{13}	2.3	4.4	3.75	5.3	6.35	7.0*
PS beam intensity/10 ${ }^{\mathbf{1 3}}$	0.6	2.3	1.0	3.0	1.75	4.0*
PS cycle length [s]	3.6	1.2	3.6	1.2	3.6	1.2/2.4*
SPS cycle length [s]	21.6	6.0	21.6	6.0	21.6	6.0/7.2
PS momentum [GeV/c]	26	14	26	14	26	14
average current $[\mu \mathrm{A}]$	0.17	1.17	0.28	1.4	0.47	1.9/1.6
power [kW]	77	470	125	565	211	747/622

[^1]
Challenges in the PS

Acceleration/Bunch splittings

Longitudinal CBI \rightarrow new damper
Transient beam loading $\rightarrow 1$ turn delay FB Transition crossing \rightarrow no limitation expected

Injection flat bottom:

Space charge $\rightarrow 2 \mathrm{GeV}$ injection upgrade Headtail instability \rightarrow transverse FB

Space Charge at injection (1.4 GeV - 2 GeV)

Study to determine largest acceptable tune spread.
Today max acceptable: $\Delta \mathrm{Qy} \sim|0.3|$ @ 1.4 GeV HL-LHC max needed: $\Delta Q y>|0.3| @ 2 \mathrm{GeV}$

Goal: demonstrate that possible to inject a beam with $\Delta Q>|0.3|$ with limited emittance blowup (max 5%)

Experimental studies:

\checkmark Learn from operational beams experience. Current Laslett at about -0.28 with Qy<0.25
\checkmark Tune scan to identify via beam losses dangerous resonances
\checkmark Driving terms measurements
\checkmark Compensate resonances
(as done already in 1975 with injection at 50 MeV)

Simulation studies:

- PTC-Orbit simulations
- IMPACT - MADX-FZM simulations
\checkmark Lack of good magnetic error model
- No error tables from magnetic measurements (à la LHC) available from 1958
- Opera©-based magnetic error simulations

2013-2014 important results:

- Better understanding of integer resonance
- Better understanding of $4^{\text {th }}$ (or $8^{\text {th }}$) order resonance

PS Limitations for high-intensity beams: what we learned from the CNGS run

Current activities (mainly presented later by Raymond, Alex, Shinji, Ji and Adrian)

- Improve understanding of existing space charge limits
- Integer resonance
- $4^{\text {th }}$ order resonance
- Normal 3rd order resonance
(in collaboration with LBL)
(in collaboration with RAL, talks of Raymond and Shinji)
(in collaboration with GSI, talks of Raymond and Giuliano)
- Understand indirect space charge effects (talk of Alexander)
- Improve machine modeling
- Random multipoles errors from geometry
- Machine alignment
- Longitudinal and transverse impedance model
- Still missing : chromo-geometric terms modeling
- Investigate alternative solution to increase maximum acceptable di tune shift on top of the $\mathbf{2} \mathrm{GeV}$ injection energy upgrade (baseline)

- Hollow bunches in the longitudinal plane (talk of Adrian)
- Horizontal dispersion increase
- Resonance compensation
- Fully coupled optics : generate vertical dispersion by linear coupling

Proton Synchrotron main magnetic unit

Combined-function magnet with hyperbolic pole shape

- Dipole field - guiding
- Quadrupole field - focusing
- Higher component from axiliary circuits
- Higher component also present due to saturation at $26 \mathrm{GeV} / \mathrm{c}$

Focusing and defocusing half (FDDF)

- 5 C-shaped block in each half
- Wedge shaped air gaps between blocks

Complex geometry of coils system In total 100+1 main units of four different types.

Coils of the PS magnet

Main coil

- Dipole and quadrupole field mostly Figure-of-eight loop

- Adjusts quadrupole field but also contributes to dipole field

Pole-face windings (PFW)

- Separately for focusing and defocusing half
- Each winding has narrow and wide circuit
- Corrects higher components of the field

PFW Powering

- 5 currents
- Control of the four beam parameters $Q_{h}, Q_{v}, \xi_{h}, \xi_{v}$
- One current remains free for controlling an additional physical parameter

Magnet representation in the optical model

Official optics

- Static elements length
- SBEND
- Bare machine quadrupolar component
- No pole-face angle
- MULTIPOLE
- Beam-based fit of NL-chroma
- JUNCTION=DRIFT

Model optics

- Dynamic elements length
- effective length correction
- SBEND
- Up to K2 from the model
- Integrated pole-face angle effect
- MULTIPOLES
- K3 (and higher if needed)
- No JUNCTION element
- Beam-based matched effective lengths corrections

Magnets (Opera© 2/3D model, measurements)

Geometry and magnetic measurements

Opera® model (2-3D)

Nonlinear chromaticity (2 GeV)

∇	measured Q_{h} (basic)
∇	measured Q_{v} (basic)
0	measured $\mathrm{Q}_{\mathrm{h}}(+\Delta \mathrm{I})$
\circ	measured $\mathrm{Q}_{\mathrm{v}}(+\Delta \mathrm{I})$
\square	measured $\mathrm{Q}_{\mathrm{h}}(-\Delta \mathrm{I})$
\square	measured $\mathrm{Q}_{\mathrm{v}}(-\Delta \mathrm{I})$
\square	calculated Q_{h}
\square	calculated Q_{v}

Figure-of-eight variation

Narrow focusing PFW variation

Narrow defocusing PFW variation

Wide defocusing PFW variation

$\mathrm{I}_{\mathrm{f} 8}=-0.018 \mathrm{~A}$
$\mathrm{I}_{\mathrm{fn}}=-0.015 \mathrm{~A} \quad \mathrm{f}_{\mathrm{fw}}=-14.545 \mathrm{~A}$
$I_{d n}=-4.669 \mathrm{~A} \quad I_{d w}=-8.235 \mathrm{~A}$
M. Juchno Thesis

Measurement data: A. Huschauer
Simulation: M. Juchno

Machine alignment 2014 (only main magnets)

Magnet alignements known but not included in MADX model yet

Beta-beating @ 1.4 GeV

T. Bach et. al, IPAC2013

Space charge reduction, transverse

1. Compensation of resonances $\left(Q_{x / y}=0.21 / 0.24\right)$
\rightarrow Closest resonance $4 Q_{y}=1$ difficult as excited by space charge
\rightarrow Compensation of $2 Q_{x}+Q_{y}=1$ and $3 Q_{y}=1$ lines during studies in 2013
2. Special optics with vertical dispersion
\rightarrow Introduce vertical dispersion to maximize beam size and reduce $D Q_{\mathrm{sc}}$
\rightarrow Optics becomes very irregular, needs simulations and beam studies
\rightarrow Evaluate potential benefit with first beam studies after LSı

Experimental study 2014

- Compensation of $4 \mathrm{Qv}=1$ with quadrupoles/breaking sym. or with octupoles
- Integer tune split of two units for $4^{\text {th }}$ order resonance
- Integer resonance scan
- Special large horizontal dispersion optics
- Fully coupled optics at injection
- Space charge study with Quadrupolar PU
- Transfer of longer bunches from PSB
- Hollow bunches
- Tune vs kick strenght at different dp/p for chromo-geom. terms at 2 GeV
- Kick response measurements
- Beta-beating and loss maps before and after orbit correction

Simulation codes requirements

- Combined function magnets, with proper treatment of stray fields
- Inclusion of multipoles (eventually up to octupole)
- Inclusion of skew component (normal and error)
- Inclusion of alignment errors (x,y and tilts)
- Inclusion of time-varying field (injection bump and RF fields for gymns)
- Long term simulations (up to 1.2 s)

Conclusions

- Outcome of 2013-14 analysis: the beam characteristics foreseen after implementation of all of $\mathrm{LIU}(25 \mathrm{~ns}, 2 \mathrm{E} 11 \mathrm{p} / \mathrm{b}, 1.9 \mu \mathrm{~m})$ are good enough for reaching the HL-LHC goal.
- 2 GeV injection energy upgrade is the baseline as solution to reduce directspace charge effects
- Better understanding of different phenomena limiting performances thanks to simulations and improved experiments analysis
- We are in condition to choose between PIC and FZM codes depending on the time scale needed for the simulations thanks to the code development of this year
- Intense MD program for 2014 (as btw in 2012-2013)
- Thanks to all the collaborators inside and outside CERN for the progresses done so far.

[^0]: \rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

[^1]: *Feasibility including operational viability (especially in PS) remains to be demonstrated

