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Artificial Schottky noise in computer beams 

2 

Analytic and numerical solutions for Gaussian and other
bunch distribution valid for !Qsc ! Qs were presented
in [7,8].

In an rf bucket the synchrotron tune Qs is a function of
the synchrotron oscillation amplitude !̂. For short bunches
Qs corresponds to the small-amplitude synchrotron tune,

Q2
s0 ¼

qV0hj"0j
2#m$%2c2

; (10)

where V0 is the rf voltage amplitude and h is the rf
harmonic number.

For head-tail modes the space charge parameter is de-
fined as a ratio of the space charge tune shift [Eq. (4)] to the
small-amplitude synchrotron tune,

qsc ¼
!Qsc

Qs0
; (11)

and the coherent intensity parameter as

qc ¼
!Qc

Qs0
: (12)

An important parameter for head-tail bunch oscillations
in long bunches is the effective synchrotron frequency
which will be different from the small-amplitude synchro-
tron frequency in short bunches. For an elliptic bunch
distribution (parabolic bunch profile) with the bunch half-
length !m ¼

ffiffiffi
5

p
&l (rms bunch length &l), one obtains the

approximate analytic expression for the longitudinal dipole
tune [15],

Qs1

Qs0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# &2

l

2

s
: (13)

Using Qs1 instead of Qs0 in Eq. (8) shows a much better
agreement with the simulation spectra for long bunches in
rf buckets (see Ref. [11]).

For Gaussian bunches with a bunching factor Bf ¼ 0:3
(Bf ¼ I0=Ip, I0 is the dc current), the transverse tune
spectra obtained from PATRIC simulations [6] for different
space charge factors and thin beams (qc ¼ 0) are shown in
Fig. 1. The dotted vertical lines indicate the positions of the
head-tail tune shifts obtained from Eq. (8) with Qs ¼ Qs1.
For the low-k satellites there is a good agreement between
Eq. (8) and the simulation results. Lines with k > 2 can
only barely be identified in the simulation spectra. The
positions of the satellites for k ¼ 0; 1; 2 together with the
predicted head-tail tune shifts from Eq. (8) are shown in
Fig. 2. The error bars indicate the obtained widths of the
peaks in the tune spectra.

It is important to notice that the simulations for moder-
ate space charge parameters (qsc & 10) require a 2.5D self-
consistent space charge solver. The theoretical studies rely
on the solution of the Möhl-Schönauer equation [16],
which assumes a constant space charge tune shift for all
transverse particle amplitudes. In PATRIC we can chose

between a fully self-consistent 2.5D space charge solver
and a rigid slice model, which corresponds to the
Möhl-Schönauer equation. The PATRIC simulation studies
using the Möhl-Schönauer model gave tune spectra with
pronounced, thin satellites also for large k, in contrary to

FIG. 1. Tune spectra obtained from the simulation for qsc ¼ 0
(top), qsc ¼ 2 (middle), and qsc ¼ 10 (bottom).

FIG. 2. Head-tail tune shifts and their width obtained from the
simulations for qc ¼ 0. The error bars indicate the width of the
peaks.

INTERPRETATION OF TRANSVERSE TUNE SPECTRA . . . Phys. Rev. ST Accel. Beams 16, 034201 (2013)
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o  Intrinsic feature of Particle-In-Cell (PIC) simulations using  
     M macro-particles, grids and Poisson or Maxwell solvers. 
 
o  Because the real particle number N>>M the noise in  
    computer beams is much stronger than the Schottky  
    noise in real beams. 

o  The noise in computer beams has been used to predict  
     the Schottky noise spectra in real beams (see example). 
 
o  Like in real beams: Schottky noise <-> IBS and diffusion. 
 
o  It would be useful to have scaling laws for the resulting  
     emittance growth due to ‘artificial’ IBS (Intrabeam Scattering)  
     as a function of:  
     macro particles M, real particles N, grid spacing,…. 

Head-tail modes with space charge 
seen in the computer noise spectrum  
(R. Singh et al., PRST-AB 2013) 
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PIC simulation scheme (for beams)  

′′yi +κ (s)yi −
qEy(xi , yi , s)

γ 0mv0
2 = 0

  ε0∇⋅
!
E = ρ(x, y, s)

73 BIRDSALL PARTICLE-IN-CELL CHARGED-PARTICLE SIMULATIONS 
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Fig. 7. Various interpolating functions for charge and force: (a) Zero-order 
(NGP); (b) first-order (CIC, PIC); and (c) second-order (parabolic or 
quadratic) spline, consisting of three parabolic sections of length Ax, joined 
with no discontinuities in the slope. (From Birdsall and Langdon [12].) 

Fig. 8. Force field F ( z )  as a function of x is a set of straight-line segments, 
from grid point to grid point, in linear weighting (from Birdsall and Langdon 
1121). 

period N Ax; stated another way, the particles “feel” the grid. 

We can now deal in detail with the effects of the spatial grid, 
as done by Langdon and Birdsall [55], and found in [12, p. 158 
IT I: 

I I  
I 

I ,  
X I  I I  

I 

I x =si+& 
x , = z - - x  2 2 2  

Fig. 9. Notation in one dimension. W O  particles are located at 21 and xz, 
with separation I = z2 - 21 and mean position Z = (z2 + z1)/2. A grid of 
spacing Ax is imposed on the space (from Birdsall and Langdon [12]). 

this case the force F (Z - f x, Z + $x), considered as a function 
of displacement ?E with separation constant, is periodic with 
period Ax. 

In order to study the effect of the nonuniformity on a plasma, 
we need the Fourier transform of F ( x l , a z ) .  For an infinite 
system we use a Fourier integral transform in x and a Fourier 
series in ?E: 

r -- 

(23) 
where 

9- 

is the grid wave number, and 

(24) 

This sign and normalization for the Fourier integral are fol- 
lowed throughout. 

Those properties of the plasma which are little affected by 
the lack of displacement invariance are expected to be similar 
to those of a plasma with two-particle force equal to the p = 0 
or average force Fo(x);  such properties can be analyzed by the 
gridless theory (Langdon and Birdsall [55]). The difference 
6F = F - Fo is a nonphysical grid force. In some respects, 
6F is like a “noise” force; however, it is coherent with the 
plasma perturbation. 

Let the particle density be n(z, t )  (actually n is a sum of 
6 functions when the number of particles in finite). Then the 
force F ( x )  on a particle at x is (time dependence ignored for 
now): 

F ( x )  = d x ’ F ( x ’ , z ) n ( x ’ ) .  (26) J 
When transformed, this becomes, using (23): 

Let us consider the interaction force F ( x l , x z ) ,  defined as 
the force on a particle at x2 due to a particle at x1 in one 
dimension. In a normal physical system, which is invariant F ( k )  = 2 FP ( k  - +,) n(k,) (27) 

-U= 
under displacement, F depends only on the separation x 
x2-x1. However, in a computer simulation using a spatial grid, 
invariance does not exist under all displacements (displacing 
particles but not the grid). Thus F also depends on the location 
relative to the grid, 3 $(xl + x2) as well as x (Fig. 9). In 
most simulations a grid with constant spacing Ax is used; in 

where 

kp  E k - pk,. (28) 

We see that the effect of 6F (corresponding to the p # 0 terms) 
is to couple density perturbations and forces at wave numbers 

 
ρ(x, y, s) =Q S(!x − !xi )

i=0

M

∑

′′xi −κ (s)xi −
qEx (xi , yi , s)

γ 0mv0
2 = 0

9.4 Plasma Simulation with Particle Codes 249

The particle position is advanced by a discrete representation of Newton’s equation
in terms of a leap-frog scheme

xn+1
i − xn

i

∆t
= v

n+1/2
i

v
n+1/2
i − v

n−1/2
i

∆t
= F(xi )∆t

mi
, (9.83)

in which the superscript labels the number of the time step. The advancement of
the velocity is made at half timesteps. A full cycle of the PIC time step is shown in
Fig. 9.20.

Fig. 9.20 Time step of the
particle-in-cell technique

9.4.2 Phase-Space Representation

Before discussing the interaction of electrons with wave fields, let us shortly recall
the description of a dynamical system in phase space. A simple one-dimensional
system, the pendulum, is described by the potential energy

Wpot = −W0 cos(ϕ) . (9.84)

For small excitation energies, the pendulum performs harmonic oscillations about
the equilibrium position at ϕ = 0. The potential well and the phase space ϕ–(dϕ/dt)
of this pendulum are shown in Fig. 9.21. The phase space contours in Fig. 9.21b
correspond to various values of total energy

Wtot = 1
2

I
(

dϕ
dt

)2

− W0 cos(ϕ) , (9.85)

I being the moment of inertia for this pendulum.

Licensed to Oliver Boine-Frankenheim<boine-frankenheim@gmx.de>

Δs

 

q :

Q = q N
M
:

N :
M ≪ N :

beam ion charge  

macro particle charge 

number of beam ions 
number of macro-particles 

-> ‘artificial’ collisions of  
macro-particles Q 
and beam particles q.  

3 

Δ ≈ Δx
Depending on particle shape S the  
macro-particles have a finite width: 

  

!
Fi =

qQS(!xi −
!x j )(
!xi −
!x j )

4πε0γ 0mv0
2 !xi −

!x j
3

j=0

M

∑

(Coulomb’s law) 
q = Ze
Q = Zpe (test particle) 

(beam particle) 
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Effect of the grid:  
Artificial heating in plasma PIC codes 
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A. B. Langdon, Effect of the spatial grid in simulation plasmas, J. Comput. Phys. (1970)  
 

kBTx =
1
2
mv2 = mβ0

2c2γ 0ε x
2

σ x
2Beam temperature: 

 
u = v − ′v  

v
 
′v T

σ x

s 

rms beam radius: 

 Δx! λDTemperature increase if the grid is too coarse: (Debye length) 

How does this relate to (computer) beams ? 

 
λD = ε0γ 0

2kBTx
q2n

≈ L
Δµ

⎛
⎝⎜

⎞
⎠⎟
ε x

Debye length: 

 

Δµx

L
= − e2Z ′Z N

2πε0mv0
2γ 0

3ε x

Space charge induced phase advance shift 
(per length L):  

λ = qZ 'N
(line charge density) 

 σ x ≫ λDSpace charge dominated beams: 
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Effect of the finite number of particles: 
Artifical collisions and fluctuations in PIC codes 
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R.W. Hockney, Measurement of the Collision and Heating Times in a 2D Thermal Computer Plasma,  
J. Comput. Phys. (1971) 

40 HOCKNEY 

SPECTRAL DENSITY 

SPATIAL CORRELATION 

FIG. 12. Measurement of the spectral density and spatial correlation for case P38 after 2000 
steps using the HNGP model. 01 = (m/2)(IS/hD) for an m x m mesh. 

The exceptional accuracy of this measurement is certainly fortutious and we 
find that good measurements cannot be obtained in the presence of very much 
computer noise. It does, however, show the feasibility of such measurements on a 
computer plasma. To indicate the scatter of measurements we list other values 
obtained for systems that had little heating, 

CIC, &,*/AD = 0.969@%0), 0.995@‘81), 

NGP, &,*/A, = LlO(P83), 0.63@2), 

HNGP, it,-,*/& = 1.45@59), 0.987(P62). 

 
D(!v) = q2

2m2
d
!
k

2π( )3
∞

∫ S(
!
k )
!
E(
!
k ,ω =

!
k!v)

2

(Diffusion) (Fluctuations/Noise spectrum) 

A.B.Langdon, C.K. Birdsall, Theory of Plasma Simulation using Finite-Size Particles,  
Phys. of Fluids (1970)  

30 HOCKNEY 

I . NGP 
- +HNGP 

- 0 HCIC 

IOr 

0.1 IO 100 
NC = nh:+W’) 

FIG. 7. The correlation of all slowing-down time measurements with NO = n(ADZ + W*) 
for the four models NGP, CIC, HNGP, HCIC. 

We quote above the average and root mean square deviation of the values of Kl 
for each measured point. The measurements range from 0.25 < AT, < 43 and 
contain cases for which 0.12 < W/X, < 32. 

The above value of Kl is in good agreement with the value of 1.27 obtained using 
the Fermi impulse approximation Ref. [2]. The difference in the value of Kl given 
in that reference to that given here is principally due to the present inclusion of a 
realistic thermal distribution of velocities rather than the square distribution used 
in Ref. [2]. 

As evidence that a width of H must be attributed to an NGP particles we can 
quote a case for which H/AD = 2 (CASE P126) 

(T&.,3 = 3.58 and nXD2 = 0.61, nH2 = 2.44, 

leading to values of Kl for different widths of 

Kl = 0.17, N, = 0.61 if W = 0 (a zero sized particle), 
Kl = 0.85, NC = 3.05 W=H*, 
Kl = 2.90, NC = 10.37 W=2H. 

Since Kl e 1 for cases in which the width is unimportant (W/h,, < 1) it is clear 
that H is the only possible choice for the width of an NGP particle. 

Similar cases indicating the required width for the other models are: 

CIC with (H/X,) = 8 (CASE P91) 
(T~/T~~) = 1.35, nh2, = 0.02, nH2 = 1.22 

slowing-down 
time (friction) 

macro-particle number M 

Artificial fluctuation spectrum 

For computer beams: Work by J. Struckmeier  
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Artificial collisions and emittance growth  
in computer beams 

6 

D ≈ν kBT
m

J. Struckmeier, Stochastic effects in real and simulated charged particle beams, PRST-AB 2000     

(Einstein relation) 

dS
dt

= 1
2
kBν

(Tx −Ty )
2

TxTy
1
ε
dε
dt

= dS
dt
, ε = ε xε y

0.0 2. 4. 6. 8. 10. 12. 14. 16. 18. 20.
                               s (m)

FODO with SIS cell length MAD-X 5.00.20  22/03/14 09.16.40

2.5

7.5

12.5

17.5

22.5

27.5

32.5

x̀
(m

)

2.5

7.5

12.5

17.5

22.5

27.5

32.5

ỳ
(m

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Dx
(m

)

` x ` y Dx µ0 = 60
0

Tx ≠ Ty
Entropy/Emittance growth only for  
anisotroptic (beam) temperatures:  

(2D beam) 

Δε
ε0

≈ β0cLνA

(anisotropy factor for a cell) 

Emittance growth along a transport channel (length L): 

A = ε x
ε y

β̂y

β̂x

+
ε y
ε x

β̂x

β̂y

− 2
β̂x ≈σ x

2ε x

For weak space charge: 

Collision frequency (for 2D and 2.5D computer beams) ? 

(4D emittance) 

(beta-function) 
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Coulomb collisions in 2D (and 2.5D) 

7 

F =
′Z Zpe

2

2πε0r
(2D ‘Coulomb’ force) 

beam rod: Z’ 

 
v⊥
2 =

Zp ′Z e2

2πε0m

v⊥
2 → N

M
v⊥
2Zp =

N
M
Z ⇒2D computer beam: ν → N

M
ν ∝ N 3/2

M
n→ M

N
n

In a 2D beam the beam macro-particles are rods: Collision angle independent on b !   

impact parameter b: 

Test beam ion: Zp 

 
θ(b) =

e2Zp ′Z
πε0mu

2 arccos
b
λD

All particles with relative velocities less than  
 
                         are deflected by angles > 900.  

collision angle: 

 
⇒ ν ≈ v⊥

v
⎛
⎝⎜

⎞
⎠⎟
4

nvλD = N
e2Zp ′Z
πε0m

⎛

⎝⎜
⎞

⎠⎟

2
σ xλD

v0
3ε x

3 ∝ N1/2Z 4

(2D collision rate) 

 
Fp (
!v) = mν !v = m d 2∫ vdbuf (!v)Δ!v (2D friction force) 

ν ∝ N 3/2

M
1− Δ

λD

⎛
⎝⎜

⎞
⎠⎟

Collision frequency for finite sized macro-particles: Δ ≈ Δx

2.5D ≈ 2D:   ⇒ ν x,y ≫ν z Δx, Δy≪ Δz Collisions are 2D in 2.5D codes 
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Example case:  
FODO channel with 2D space charge 

8 

κ x = −κ y , ε x = ε y
⇒ A > 0

FODO cell: 

 
′′ax +κ (s)ax −

εx
2

ax
3 −

2K
ax + ay

= 0

 
′′ay +κ (s)ay −

εy
2

ay
3 −

2K
ax + ay

= 0

 
K = qI

2πε0mc
3β 3γ 3 ∝ Z 2N

Perveance: 

Δµx = µx − µx0 ∝ Z 2N

space charge induced  
phase advance shift: 

RMS envelope equations  
(used for matching):  

µ0 = 60
o, Δµx = −20o

0 2 4 6 8 10 12 14 16 18
s [m]

10

15

20

25

30

35

40

�
x

[m
]

K = 0

K > 0

0 2 4 6 8 10 12 14 16 18
s [m]

10

15

20

25

30

35

40

�
y

[m
]

K = 0

K > 0

FODOxx cell: 

No emittance growth  
expected. 

κ x = −κ y , ε x = ε y
⇒ A = 0
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0 10 20 30 40 50 60
�Dµ

10�5

10�4

10�3

10�2

10�1

100

De
/e

0

FODOxx
FODO
N2

Simulation results for FODO channels 

9 

ν ∝ Δµx

L
⎛
⎝⎜

⎞
⎠⎟
3/2 1
M

∝ N 3/2

M

FODO > FODOxx (only) by factor 2 in emittance growth/collision rate 

PATRIC (2D): Emittance growth after 1000 cells. 

(2D collision rate for a computer beam) 

PyORBIT (with 2D space charge) 

S. Appel 

Δε
ε0

≈ β0cLν(A +G)

(ripple factor) (emittance growth) 

G =
β̂x,max

〈β̂x 〉
+
β̂y,max

〈β̂y 〉
− 2

Δµx ∝ N [deg]

1
7

1
8

1
9

collision  
dominated 

noise/resonance dominated 
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Artificial ‘Schottky’ fluctuation spectrum 

10 

 � P =�d�2 +�Δσ�2 +O(Δ〈x3〉,!)

Ek = Er (R,θ )exp(ikθ )dθ
0

2π

∫

  k=1 
dipolar 

     k=2 
quadrupolar 

    k>2 
higher order 

D ∝P = Pk
k
∑

Diffusion Electric field  
fluctuations 

Remark: Saturated ‘self-consistent ’fluctuation  
spectrum does not depend on the initial random macro-particle seed !  

beam pipe 

‘Harmonic decomposition’ of  
the electric field fluctuations  

R
θ

beam 

0 20 40 60 80 100
k

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

P
k

∆µ = −1o

∆µ = −5o

∆µ = −15o

∆µ = −30o

kc ≈ aλD
−1

Fluctuation spectrum after 1000 cells. 

high frequency  
‘collisions’ 

low order  
resonances 
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Effect of the macro-particle number 

11 

10�4 10�3

1/M

10�5

10�4

10�3

10�2

�
"/

" 0

⇤ = 20

M�1

FODO: �µ = �150

FODOxx: �µ = �150

FODO-FODOxx: �µ = �150

ν ∝ Δµx

L
⎛
⎝⎜

⎞
⎠⎟
3/2 1
M

∝ N 3/2

M

‘strong coupling’: 
large angle collisions dominate 

1
M

‘weak coupling’: 
small angle collisions dominate 

Λ = 10

M ≈ 2000

          scaling tested up 
to 50000 macro-particles. 
1/M
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Effect of the grid spacing 

12 

‘grid heating’ 

‘collisions’ 

Δµx = −30o

ν ∝ N 3/2

M
1− Δx

λD

⎛
⎝⎜

⎞
⎠⎟

in 2D: finite ‘particle-particle limit’ for  
 

Δx→ 0



GSI Helmholtzzentrum für Schwerionenforschung GmbH 

Effect of (periodic) focusing 

13 

G→ 0
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                               s (m)
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0
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0.8

0.9

1.0

Dx
(m

)

` x` y Dx µ0 = 60
0

G

(limit of constant  
 focusing) 

G =
β̂x,max

〈β̂x 〉
+
β̂y,max

〈β̂y 〉
− 2

Δε
ε0

∝νG

(ripple factor) 

It seems there  
is a Gthreshold 

Emittance growth decreases  
strongly with decreasing G and  
vanishes for constant focusing. 
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Low Noise or Noise Free Schemes  

14 

394 E. Sonnendrücker et al. / Computer Physics Communications 164 (2004) 390–395

a mismatched beam in a uniform focusing channel and
then in the case of a matched beam in a periodic focus-
ing channel.
We considered the model problem of the transverse

axisymmetric Vlasov–Poisson equation with vanish-
ing canonical angular momentum. This problem reads

∂f

∂ t
+ vr

∂f

∂r
+

(
Fapp + q

m
Er

)
∂f

∂vr
= 0,

1
r

d
dr

(rEr) = ρ =
∫

f dvr .

6.1. Mismatched Gaussian beam in a uniform
focusing channel

We consider a mismatched Gaussian beam

f0(r, vr ) = n0e−(r2/a2+v2/v2th)

with a linear applied field of the form αr .
We represent snapshots of the beam and the moving

computing box in Fig. 1. The results are very satisfy-

ing as the computing box follows very precisely the
global motion of the beam.

6.2. Matched Gaussian beam in a periodic focusing
channel

We consider here a matched Gaussian beam

f0(r, vr ) = n0e−(r2/a2+v2/v2th)

with a linear applied field of the form α(z)r , where
α(z) is a piecewise constant function switching be-
tween 0 and some fixed value, the pattern repeating
periodically (the repetition length is called a lattice pe-
riod).
We represent snapshots of the beam and the mov-

ing computing box in Fig. 2. Here as well, although
some filaments are generated by the nonlinear forces,
the computing box obtained from the RMS envelope
of the beam does a good job in helping to determine
the region of nonvanishing f .

Fig. 1. Snapshots of the motion of a mismatched Gaussian beam in a uniform focusing channel.

Sonnendrücker, Vay, et al., CPC (2004) 
Al-Khateeb, Boine-F., et al. PRST- AB (2003)   f (x,v,t − Δt)

f (x,v,t)

 

∂ f
∂t

+ !v ∂ f
∂!x

− e
!
E
me

∂ f
∂!v

= 0

Vlasov simulation: 2D beam profile in a FODO channel 

2D Vlasov simulations need a 4D grid ! 
Noise free: Direct Vlasov solvers 

Pro: Noise free      
Con: Grid induced dispersion, 4D (6D) adaptive grid needed 

 f (
!x, !p, s) = f0 (

!x, !p)+δ f (!x, !p, s)
Low noise: δF-PIC scheme   

Aydemir, PoP (1994) 
Qin, Davidson, et al., PRST-AB (2000) 
Sonnendrücker, et al, (2013)   

(known  
 matched  
 distribution) 

(unknown:  
 halo, …..) 

 
⇒ ρ(x, y, s) =Q wiS(

!x − !xi )
i=0

M

∑ dw
dt

= −(1−w) d ln f0
dt

(additional equation  
 for particle weights)  

δF-PIC:  
Standard scheme for PIC codes used in magnetic fusion ! 

Pro: Noise only from the ‘halo’,  
        not from the beam core. 
Con: weight equation  
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Conclusions and Outlook 
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o  Cures: Larger M + digital filters, δf-PIC (very attractive !) 
o  3D: please wait for Ingo’s presentation ! 

  

Δε
ε0

≈ tν( A+G) ν ∝ N 3/2

M
1− Δ

λD

⎛
⎝⎜

⎞
⎠⎟

We found a very approximate (!) scaling law for the numerical emittance growth: 

(2D and 2.5D collision rate) 

o  G: ‘ripple’ (dominant contribution),  A: anisotropy (adds a factor 2, roughly)  
o  for weak space charge: resonances + fluctuations dominate 
o  for strong space charge: artificial collisions dominate 
o  Open question: Exact origin of the emittance growth for A=0 ? 

The ‘numerical IBS’ induced emittance growth for an initially rms matched beam 
distribution with 2D space charge and periodic focusing has been studied using two 
different codes (PATRIC and pyORBIT).        
The topic is a bit ‘academic’ as the emittance growth can be controlled by using more  
macro-particles on modern computers (+ digital filters). Still: 
o  Scaling laws with M, current, grid spacing are useful to determine the required M. 
o  The artificial Schottky noise can be used as valuable diagnostics for computer beams.     
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Coulomb collisions in 3D 
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Fpi =
ZZpe

2

4πε0r
2

b⊥ =
ZZpe

2

4πε0mv
2

impact parameter b: 

σ ≈ πb⊥
2

(cross section) 

(Coulomb force) 

ν = nvσ ≈ ni
ZZpe

2

4πε0mv
3/2

⎛

⎝⎜
⎞

⎠⎟

2

∝ NZ 4

(collision rate) 

Test beam ion: Zp 

beam ion: Z 

Zp =
N
M
Z ⇒Computer beam: b⊥ →

N
M
b⊥ ν → N

M
ν ∝ N 2

M
n→ M

N
n

Λ→ M
N

Λ (close) collisions are more  
important in a computer beam ! 

 
Fp (
!v) = mβ f

!v = m d 3∫ vdΩuf (!v) dσ
dΩ

Δ!v LC ≈ ln λD

b⊥

ν → N
M

ν ∝ N 2

M
ln λD

Δ
⎛
⎝⎜

⎞
⎠⎟

 
θ(b) = 2arctan

e2ZpZ
4πε0mu

2b

(coupling parameter)  
Λ = λD

b⊥
≫1

(friction force) (Coulomb log) 


