

Artificial collisions and emittance growth in computer simulations of intense beams

Qliver Boine-Frankenheim, Ingo Hofmann, Sabrina Appel
TU Darmstadt and GSI

Artificial Schottky noise in computer beams

- Intrinsic feature of Particle-In-Cell (PIC) simulations using M macro-particles, grids and Poisson or Maxwell solvers.
- Because the real particle number $\mathrm{N} \gg \mathrm{M}$ the noise in computer beams is much stronger than the Schottky noise in real beams.
- The noise in computer beams has been used to predict the Schottky noise spectra in real beams (see example).
- Like in real beams: Schottky noise <-> IBS and diffusion.
- It would be useful to have scaling laws for the resulting emittance growth due to 'artificial' IBS (Intrabeam Scattering) as a function of:
macro particles M, real particles N, grid spacing,....

Head-tail modes with space charge seen in the computer noise spectrum (R. Singh et al., PRST-AB 2013)

PIC simulation scheme (for beams)

q : beam ion charge
$Q=q \frac{N}{M}$: macro particle charge
N : number of beam ions
$M \ll N$: number of macro-particles

$$
\begin{aligned}
& x_{i}^{\prime \prime}-\kappa(s) x_{i}-\frac{q E_{x}\left(x_{i}, y_{i}, s\right)}{\gamma_{0} m v_{0}^{2}}=0 \\
& y_{i}^{\prime \prime}+\kappa(s) y_{i}-\frac{q E_{y}\left(x_{i}, y_{i}, s\right)}{\gamma_{0} m v_{0}^{2}}=0
\end{aligned}
$$

-> 'artificial' collisions of
macro-particles Q
and beam particles q.

$\vec{F}_{i}=\sum_{j=0}^{M} \frac{q Q S\left(\vec{x}_{i}-\vec{x}_{j}\right)\left(\vec{x}_{i}-\vec{x}_{j}\right)}{4 \pi \epsilon_{0} \gamma_{0} m v_{0}^{2}\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}}$
(Coulomb's law)
$q=Z e \quad$ (beam particle)
$Q=Z_{p} e \quad$ (test particle)
Depending on particle shape S the macro-particles have a finite width: $\Delta \approx \Delta x$

Effect of the grid:

Artificial heating in plasma PIC codes

A. B. Langdon, Effect of the spatial grid in simulation plasmas, J. Comput. Phys. (1970)

Temperature increase if the grid is too coarse: $\Delta x \gtrsim \lambda_{D} \quad$ (Debye length)

How does this relate to (computer) beams?

Beam temperature: $k_{B} T_{x}=\frac{1}{2} m v^{2}=\frac{m \beta_{0}^{2} c^{2} \gamma_{0} \varepsilon_{x}^{2}}{\sigma_{x}^{2}}$

Debye length:

$$
\lambda_{D}=\sqrt{\frac{\epsilon_{0} \gamma_{0}^{2} k_{B} T_{x}}{q^{2} n}} \approx \sqrt{\left(\frac{L}{\Delta \mu}\right) \varepsilon_{x}}
$$

Space charge induced phase advance shift (per length L):

$$
\frac{\Delta \mu_{x}}{L}=-\frac{e^{2} Z Z^{\prime} N}{2 \pi \epsilon_{0} m v_{0}^{2} \gamma_{0}^{3} \varepsilon_{x}} \quad \begin{aligned}
& \quad \lambda=q Z^{\prime} N \\
& \text { (line charge density) }
\end{aligned}
$$

Space charge dominated beams: $\sigma_{x} \gg \lambda_{D}$

Effect of the finite number of particles: Artifical collisions and fluctuations in PIC codes

R.W. Hockney, Measurement of the Collision and Heating Times in a 2D Thermal Computer Plasma, J. Comput. Phys. (1971)

SPECTRAL DENSITY
A.B.Langdon, C.K. Birdsall, Theory of Plasma Simulation using Finite-Size Particles, Phys. of Fluids (1970)

$$
\begin{aligned}
& D(\vec{v})=\frac{q^{2}}{2 m^{2}} \int^{\infty} \frac{d \vec{k}}{(2 \pi)^{3}} S(\vec{k})|\vec{E}(\vec{k}, \omega=\vec{k} \vec{v})|^{2} \\
& \text { (Diffusion) } \quad \text { (Fluctuations/Noise spectrum) }
\end{aligned}
$$

For computer beams: Work by J. Struckmeier

Artificial collisions and emittance growth in computer beams

J. Struckmeier, Stochastic effects in real and simulated charged particle beams, PRST-AB 2000

$$
D \approx v \frac{k_{B} T}{m} \quad \text { (Einstein relation) }
$$

Entropy/Emittance growth only for anisotroptic (beam) temperatures: $T_{x} \neq T_{y}$

$$
\begin{array}{rc}
\frac{d S}{d t}=\frac{1}{2} k_{B} v \frac{\left(T_{x}-T_{y}\right)^{2}}{T_{x} T_{y}} & \frac{1}{\varepsilon} \frac{d \varepsilon}{d t}=\frac{d S}{d t}, \quad \varepsilon=\varepsilon_{x} \varepsilon_{y} \\
\text { (2D beam) } & \text { (4D emittance) }
\end{array}
$$

For weak space charge:
$\hat{\beta}_{x} \approx \sigma_{x}^{2} \varepsilon_{x} \quad$ (beta-function)

Emittance growth along a transport channel (length L):

$$
\begin{aligned}
\frac{\Delta \varepsilon}{\varepsilon_{0}} \approx \beta_{0} c L v A \quad & A=\left\langle\frac{\varepsilon_{x}}{\varepsilon_{y}} \frac{\hat{\beta}_{y}}{\hat{\beta}_{x}}+\frac{\varepsilon_{y}}{\varepsilon_{x}} \frac{\hat{\beta}_{x}}{\hat{\beta}_{y}}-2\right\rangle \\
& \text { (anisotropy factor for a cell) }
\end{aligned}
$$

Coulomb collisions in 2D (and 2.5D)

In a 2D beam the beam macro-particles are rods: Collision angle independent on b !

All particles with relative velocities less than
$v_{\perp}^{2}=\frac{Z_{p} Z^{\prime} e^{2}}{2 \pi \epsilon_{0} m}$ are deflected by angles $>90^{\circ}$.

$\begin{array}{rlrl}F_{p}(\vec{v})=m v \vec{v}=m \int d^{2} v d b u f(\vec{v}) \Delta \vec{v} & \text { (2D friction force) } \quad \text { Test beam ion: } Z_{p} \\ \left(v_{p}\right)^{4} & F=\frac{Z^{\prime} Z_{p} e^{2}}{2 \pi \varepsilon_{0} r}\end{array}$
$\Rightarrow \quad v \approx\left(\frac{v_{\perp}}{v}\right)^{4} n v \lambda_{D}=N\left(\frac{e^{2} Z_{p} Z^{\prime}}{\pi \epsilon_{0} m}\right)^{2} \frac{\sigma_{x} \lambda_{D}}{v_{0}^{3} \varepsilon_{x}^{3}} \propto N^{1 / 2} Z^{4}$
(2D ‘Coulomb’ force)
(2D collision rate)
2D computer beam: $\quad Z_{p}=\frac{N}{M} Z \quad \Rightarrow \quad v_{\perp}^{2} \rightarrow \frac{N}{M} v_{\perp}^{2} \quad n \rightarrow \frac{M}{N} n \quad v \rightarrow \frac{N}{M} v \propto \frac{N^{3 / 2}}{M}$
Collision frequency for finite sized macro-particles: $v \propto \frac{N^{3 / 2}}{M}\left(1-\frac{\Delta}{\lambda_{D}}\right) \quad \Delta \approx \Delta x$
2.5D $\approx 2 \mathrm{D}: \quad \Delta x, \Delta y \ll \Delta z \quad \Rightarrow \quad v_{x, y} \gg v_{z} \quad$ Collisions are 2D in 2.5D codes

Example case:
 FODO channel with 2D space charge

RMS envelope equations (used for matching):

$$
\begin{aligned}
& a_{x}^{\prime \prime}+\kappa(s) a_{x}-\frac{\epsilon_{x}^{2}}{a_{x}^{3}}-\frac{2 K}{a_{x}+a_{y}}=0 \\
& a_{y}^{\prime \prime}+\kappa(s) a_{y}-\frac{\epsilon_{y}^{2}}{a_{y}^{3}}-\frac{2 K}{a_{x}+a_{y}}=0
\end{aligned}
$$

Perveance:

$$
K=\frac{q I}{2 \pi \epsilon_{0} m c^{3} \beta^{3} \gamma^{3}} \propto Z^{2} N
$$

space charge induced phase advance shift:

$$
\Delta \mu_{x}=\mu_{x}-\mu_{x 0} \propto Z^{2} N
$$

FODO cell:

$$
\begin{aligned}
& \kappa_{x}=-\kappa_{y}, \quad \varepsilon_{x}=\varepsilon_{y} \\
& \Rightarrow A>0
\end{aligned}
$$

FODOxx cell:

$$
\begin{aligned}
& \kappa_{x}=-\kappa_{y}, \quad \varepsilon_{x}=\varepsilon_{y} \\
& \Rightarrow \quad A=0
\end{aligned}
$$

No emittance growth expected.

$$
\mu_{0}=60^{\circ}, \quad \Delta \mu_{x}=-20^{\circ}
$$

Simulation results for FODO channels

PATRIC (2D): Emittance growth after 1000 cells.
noise/resonance dominated

$$
v \propto\left(\frac{\Delta \mu_{x}}{L}\right)^{3 / 2} \frac{1}{M} \propto \frac{N^{3 / 2}}{M}
$$

(2D collision rate for a computer beam)

PyORBIT (with 2D space charge)

$\frac{\Delta \varepsilon}{\varepsilon_{0}} \approx \beta_{0} c L v(A+G) \quad G=\frac{\hat{\beta}_{x, \text { max }}}{\left\langle\hat{\beta}_{x}\right\rangle}+\frac{\hat{\beta}_{y, \text { max }}}{\left\langle\hat{\beta}_{y}\right\rangle}-2$
(emittance growth)
(ripple factor)

FODO > FODOxx (only) by factor 2 in emittance growth/collision rate

Artificial 'Schottky' fluctuation spectrum

$$
P=\underset{\left.\substack{\mathrm{k}=1 \\ \text { dipolar }} \underset{\text { kuadrupolar }}{\mid d}\right|^{2}+|\Delta \sigma|^{2}}{\substack{\text { k }>2 \\ \text { higher order }}}+O\left(\Delta\left\langle x^{3}\right\rangle, \cdots\right)
$$

$$
\text { Diffusion } D \propto P=\sum_{\substack{k \\ \text { Electric field } \\ \text { fluctuations }}} P_{k}
$$

'Harmonic decomposition' of the electric field fluctuations

$$
E_{k}=\int_{0}^{2 \pi} E_{r}(R, \theta) \exp (i k \theta) d \theta
$$

Fluctuation spectrum after 1000 cells.
 resonances

Remark: Saturated 'self-consistent 'fluctuation spectrum does not depend on the initial random macro-particle seed!

Effect of the macro-particle number

'weak coupling':
small angle collisions dominate
'strong coupling':
large angle collisions dominate

$$
\begin{aligned}
& \text { COD: } \begin{array}{l}
M^{-1} \\
\text { FODO: } \Delta \mu=-15^{0} \\
\text { FODOxx: } \Delta \mu=-15^{0}
\end{array} \\
& 1 / \mathrm{MODO} \text { FODOxx: } \Delta \mu=-15^{0}
\end{aligned}
$$ to 50000 macro-particles.

Effect of the grid spacing

in 2D: finite 'particle-particle limit' for $\Delta x \rightarrow 0$

Effect of (periodic) focusing

$$
\begin{array}{r}
\frac{\Delta \varepsilon}{\varepsilon_{0}} \propto v G \quad \frac{\hat{\beta}_{x, \text { max }}}{\left\langle\hat{\beta}_{x}\right\rangle}+\frac{\hat{\beta}_{y, \text { max }}}{\left\langle\hat{\beta}_{y}\right\rangle}-2 \\
\text { (ripple factor) }
\end{array}
$$

$G \rightarrow 0$
(limit of constant focusing)

Low Noise or Noise Free Schemes

Noise free: Direct Vlasov solvers
Vlasov simulation: 2D beam profile in a FODO channel

> Sonnendrücker, Vay, et al., CPC (2004) AI-Khateeb, Boine-F., et al. PRST- AB (2003)

Pro: Noise free
x Con: Grid induced dispersion, 4D (6D) adaptive grid needed
Low noise: $\delta \mathbf{F}-\mathrm{PIC}$ scheme

$$
f(\vec{x}, \vec{p}, s)=f_{0}(\vec{x}, \vec{p})+\delta f(\vec{x}, \vec{p}, s) \Rightarrow \rho(x, y, s)=Q \sum_{i=0}^{M} w_{i} S\left(\vec{x}-\vec{x}_{i}\right) \quad \frac{d w}{d t}=-(1-w) \frac{d \ln f_{0}}{d t}
$$

(known (unknown: matched halo,.....) distribution)

Pro: Noise only from the 'halo', not from the beam core.
Con: weight equation

סF-PIC:

Standard scheme for PIC codes used in magnetic fusion !

Aydemir, PoP (1994)
Qin, Davidson, et al., PRST-AB (2000)
Sonnendrücker, et al, (2013)

Conclusions and Outlook

The 'numerical IBS' induced emittance growth for an initially rms matched beam distribution with 2D space charge and periodic focusing has been studied using two different codes (PATRIC and pyORBIT).
The topic is a bit 'academic' as the emittance growth can be controlled by using more macro-particles on modern computers (+ digital filters). Still:

- Scaling laws with M, current, grid spacing are useful to determine the required M.
- The artificial Schottky noise can be used as valuable diagnostics for computer beams.

We found a very approximate (!) scaling law for the numerical emittance growth:

$$
\frac{\Delta \varepsilon}{\varepsilon_{0}} \approx t v(A+G) \quad v \propto \frac{N^{3 / 2}}{M}\left(1-\frac{\Delta}{\lambda_{D}}\right) \quad(2 \mathrm{D} \text { and 2.5D collision rate })
$$

- G: 'ripple' (dominant contribution), A: anisotropy (adds a factor 2, roughly)
- for weak space charge: resonances + fluctuations dominate
- for strong space charge: artificial collisions dominate
- Open question: Exact origin of the emittance growth for $\mathrm{A}=0$?
- Cures: Larger M + digital filters, ठf-PIC (very attractive !)
- 3D: please wait for Ingo's presentation!

Coulomb collisions in 3D

$$
b_{\perp}=\frac{Z Z_{p} e^{2}}{4 \pi \varepsilon_{0} m v^{2}} \quad \sigma \approx \pi b_{\perp}^{2}
$$

(cross section)

$$
v=n v \sigma \approx n_{i}\left(\frac{Z Z_{p} e^{2}}{4 \pi \varepsilon_{0} m v^{3 / 2}}\right)^{2} \propto N Z^{4}
$$

(collision rate)

Test beam ion: Z_{p}

$$
F_{p i}=\frac{Z Z_{p} e^{2}}{4 \pi \varepsilon_{0} r^{2}} \text { (Coulomb force) }
$$

$$
F_{p}(\vec{v})=m \beta_{f} \vec{v}=m \int d^{3} v d \Omega u f(\vec{v}) \frac{d \sigma}{d \Omega} \Delta \vec{v}
$$

(friction force)
$L_{C} \approx \ln \frac{\lambda_{D}}{b_{\perp}}$
(Coulomb log)

$$
\Lambda=\frac{\lambda_{D}}{b_{\perp}} \gg 1
$$

(coupling parameter)

Computer beam: $\quad Z_{p}=\frac{N}{M} Z \quad \Rightarrow \quad b_{\perp} \rightarrow \frac{N}{M} b_{\perp} \quad n \rightarrow \frac{M}{N} n \quad v \rightarrow \frac{N}{M} v \propto \frac{N^{2}}{M}$
$\Lambda \rightarrow \frac{M}{N} \Lambda$ (close) collisions are more
important in a computer beam !

$$
v \rightarrow \frac{N}{M} v \propto \frac{N^{2}}{M} \ln \left(\frac{\lambda_{D}}{\Delta}\right)
$$

