

LHC Injectors Upgrade

LHC Injectors Upgrade

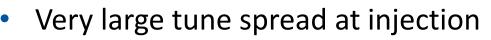
Space Charge in the PS Booster

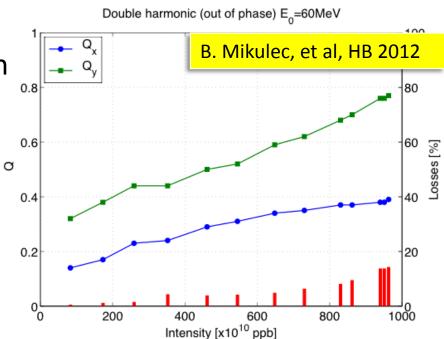
E. Benedetto

Contributions from: C. Carli, V. Forte, M. Kowalska, M. Martini, M. Mc Ateer, B. Mikulec, V. Raginel, G. Rumolo

20/5/2014 Space Charge Collaboration Meeting 2014

- Intro PS Booster description & Upgrade plan
- Measures against Space Charge
- Space Charge studies for the PS Booster
- Machine modeling
- Computing time




	Circumference:	157m		
	Super-periodiciy:	16		
	Injection:	conventional Multi-Turn \rightarrow upgrade	to H-	
		50 MeV \rightarrow upgrade to 160 MeV		
	Extraction energy:	1.4 GeV \rightarrow upgrade to 2 GeV	AD	
	Cycle length:	1.2s	CNGS	
	Cycle length.		EASTA	
	# bunches:	1 x 4 Rings	EASTB EASTC	
	PE covition:	h_{-1} , 2, h_{-1}	LHCINDIV	
	RF cavities:	h=1+2, h=16	LHCPROBE	
	Tunes at injection:	4.30, 4.45, ~1e-3	LHC 100ns	
			LHC 25ns [
	Rev. freq. (160 MeV): ~1MHz		LHC 25ns E LHC 25ns F	
	# protons/bunch:	50 → 1000 x 1e10	LHC 50ns [
	•		LHC 50ns S	
	H. emittance:	2 →15 um	LHC 75ns S	
	V.I emittance:	$2 \rightarrow 9 \text{ um}$	MTE NORMGPS-	
			SFTPRO	
	Longitud. emittance	:1 → 1.8 eVs	STAGISO 1	
			STAGISO 1	
			TOF	

	PSB
AD	
CNGS	
EASTA	
EASTB	
EASTC	
LHCINDIV	
LHCPROBE	
LHC 100ns SB	
LHC 25ns DB A	
LHC 25ns DB B	
LHC 25ns H9 A	& B
LHC 50ns DB A	& B
LHC 50ns SB	
LHC 75ns SB	
MTE	
NORMGPS-HRS	
SFTPRO	
STAGISO 1.4G	ev
STAGISO 1Gev	
TOF	

Space Charge limitations in the PSB

- Up to 0.4 for LHC beams
- > 0.7 for high intensity (with losses)

- Injection energy upgrade:
 - From 50 to 160 MeV:
 - 2x intensity (for given emittance)
 - 1/2 x emittance (for the same intensity)
 - Or a combination ...

Measures against Space Charge

- Double harmonic: h1+h2
- Acceleration (no energy flat bottom)
 - H- injection directly on accelerating bucket
 - Today: MT injection in coast, then adiabatic capture + acceleration
- Transverse painting:
 - Horiz. Painting + Vert. Steering
 - Today: injection offset in both planes (V steering and delay of the bump decay wrt injection timing)
- Working point varies with time
- Resonance compensation:
 - Empirical (based on loss reduction and driven by phyiscs considerations)
 - Systematic studies driving terms and response matrix ongoing (M. McAteer)

Areas of investigation

•

 Emittance preservation for LHC beams (increased brightness)
e.g. during fall of Hinj chicane bump
Np=3.4e12 (=2x today)
Ex=1.72 um

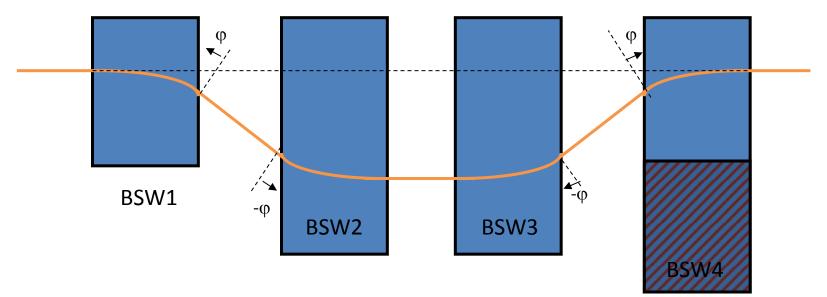
Ey=1.72 um (LIU Parameters, EDMS-1296306) Losses control for high intensity beams (increase intensity)

More activation with increased energy

 \rightarrow See Magda's talk

Np > 1.e13 (today nominal) Ex= 15 um Ey= 9 um Multi-Turn injection dynamics (both present and H-) Must include Space Charge

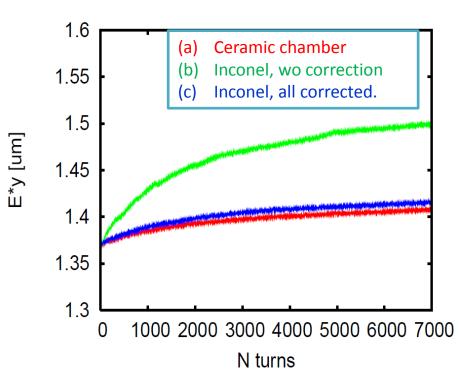
•


Benchmark Simulations w. Measurements & Theory

→ See Vincenzo's talk

Optics Model (via response matrix and driving terms)

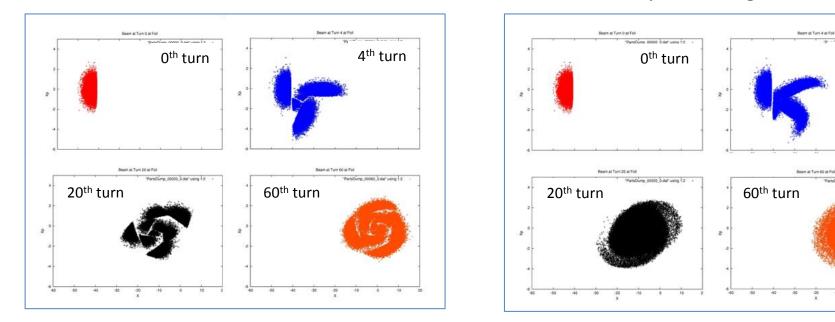
Studies of emittance preservation



- Perturbation from chicane magnets
- Edge effects (rectangular magnets)
- Corrugated Inconel vacuum chamber new baseline (ceramic in the original design) → induced Eddy currents:
 - Delay of ~50us
 - Higher order field components (sextupolar)
 - Quadrupolar feed-down
 - Excitation 3rd order resonance

3D magnet simulation by B. Balhan, J. Borburgh Chicane ramp-down shape by D. Aguglia, D. Nisbet

Studies of emittance preservation

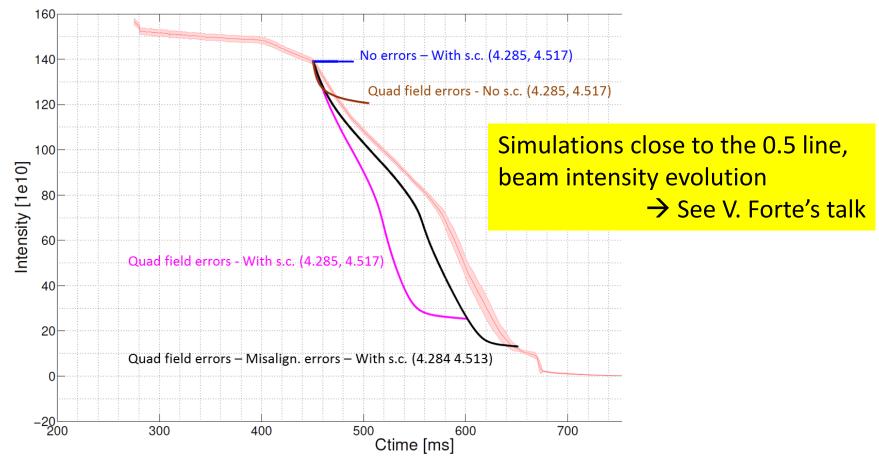

- Simulations with PTC-Orbit:
 - Time varying elements
 - Accelerating bucket
 - Double harmonic
 - Optics model as simple as possible
 - No errors except in BSW magnets
- Results are valid in relative, to discriminate between ceramic and inconel chamber

- No showstoppers for inconel chamber found, but compensation is required
 - additional trims on main quads QDE3, QDE14

Multi Turn injection (present scheme w. septum)

w/o space Charge

Differences in beam profiles and losses if space charge is (not) included in the simulations


with space Charge

4th turn

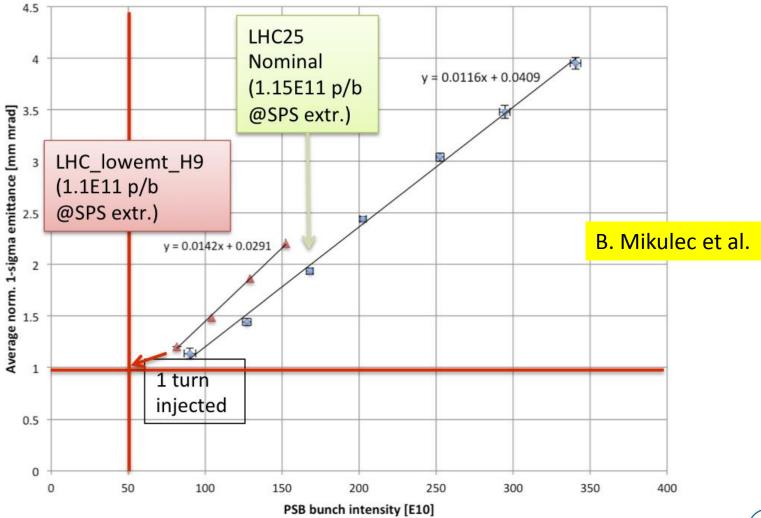
Machine modeling and benchmark

Simulations: losses behavior for long bunch

Very good agreement between measurements & simulations when machine model (misalignments and field errors) is implemented

- Reasonably "short" time scales
- PTC-Orbit (migration to PTC-pyOrbit in summer)
- Time on our CERN cluster:
 - Chicane decay ~7ms=~ 7'000 turns \rightarrow 8 hours
 - Benchmark with measurements ~200ms → >2 weeks (continuous tracking, i.e. dump & load for restart)
 - High intensity & emittance beams → x2 time (increase # macroparticles)

# SC nodes:	~200
# macroparticles:	250k → 500k


- Goal: improve understanding of current Space Charge limits and predict PSB performance with the new H- injection
 - LHC (high brightness) beams \rightarrow emittance preservation
 - High Intensity beams \rightarrow losses control
 - Multi-Turn (conventional or H-) process itself
- Benchmark code vs. measurements, was our major effort of MDs in 2012-2013
- Optics model (response matrix and driving terms) studies ongoing in //, the aim is to implement resonance compensation scheme
- Knowledge of optics model fundamental for accurate prediction of Space-Charge induced losses and beam blow-up

Curve emittance vs. Intensity

