Centrality-dependent p+Pb measurements in ATLAS

Dennis V. Perepelitsa Brookhaven National Laboratory

14 February 2014 LHC Physics Centre at CERN (LPCC) Workshop on Centrality in p+A Collisions

(SP51a=B)(O

ОКНА

ATIONAL LABORATORY

(PERIMENT

LHC Physics Centre at CERN

L P(

Centrality-dependent p+Pb Measurements

~1 µb⁻¹

~1 µb-'

~31 nb⁻¹

- 1. Total charged particle multiplicity, $dN_{ch}/d\eta$
 - $-2.7 < \eta^{lab} < +2.7$, charged particles with $p_T > 0$
 - ATLAS-CONF-2013-096
- 2. Charged particle nuclear modification factors, R_{pPb}
 - -2 < y^{*} < +2.5, 0.1 GeV < p_T < 20 GeV
 - 5.02 TeV pp reference: \sqrt{s} -interpolation of 2.76 and 7 TeV data
 - ATLAS-CONF-2013-107
- 3. Jet nuclear modification factors, $R_{\text{pPb}}{}^{\text{PYTHIA}}$ and R_{CP}
 - -4.4 < y^{*} < +0.8, 25 GeV < p_T < 400 GeV
 - 5.02 TeV pp reference: ATLAS tune of PYTHIA 6.4
 - ATLAS-CONF-2013-105

 \Rightarrow <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u> \Leftarrow

- Total multiplicity: fundamental way to characterize proton-nucleus collisions
 - Sensitive to models of soft particle production and the nuclear wavefunction
 - Centrality-dependent results can provide even more information

Hard probes of p(d)+A

- Hard probes access the partonic content in nuclei
 - Sensitive to initial state energy loss, possible saturation effects, etc.
- Centrality-dependent measurements with a wide kinematic range needed for full picture
 - For example, to probe impact-parameter dependence of the nPDFs

Pb

ATLAS detector

Inner Detector -2.5 < η < +2.5

Dp

Convention: η , $y^* < 0$ is *proton*-going

EMCal+HCal system $-4.9 < \eta < +4.9$

Pb-going Forward Calorimeter $+3.2 < \eta < +4.9$

Centrality in *p*+Pb collisions

- Centrality determined using ΣE_T in Pb-going FCal, +3.2 < η < +4.9
 - using the standard Glauber model and two Glauber-Gribov variants as the input P(N_{part}) distribution, all three considered "plausible" at this point
 - best fits to the data include non-linear N_{part} dependence & residual diffractive term
- For more detailed discussion, see talk by B. Cole in the morning session

I. Charged particle dN_{ch}/dη

Charged particle reconstruction

8

- Hits in the first three Pixel detector layers are used
- Three methods with different systematics:
 - Two 2-point tracklet methods
 - 3-point track method (& extrapolation to p_T = 0)
- Consistency in the results after all corrections

- "Fake" tracklets resulting from combinatoric pixel cluster pairs
- Estimated by 180° flip of pixel clusters in the outer layer
- Procedure benchmarked in MC
- Fake contribution statistically subtracted

$dN_{ch}/d\eta$ vs. centrality

- 8 centrality bins from 0-1% to 60-90%
 - visible double peak structure
- Distribution becomes more asymmetric in more central events
- Large difference in dN_{ch}/dη between adjacent centrality classes
 - especially between 0-1% and 1-5% centralities!
 - centrality dependence even at $\eta = -2.7$

dN_{ch}/dŋ central/peripheral ratio

- Divided by dN_{ch}/dη in 60-90% centrality
 - (similar to an R_{CP} but without removing any geometric factors — yet)
 - double peak divides out
- Ratio grows linearly with η!
 - with a centrality-dependent slope

• Note: factor of 2 change in 0-1% bin from $\eta = -2.7$ to $\eta = +2.7$

N_{part} scaling ... at which η ?

- Now, select a few centralities and explore the η-dependence
 - N_{part}-scaled multiplicity for 0-1% and 60-90% events
 - same data, just different Npart
- For each model, the distributions intersect but at a different η
 - thus, each model has a different "scaling region"
 - For Glauber-Gribov 0.55, this happens right at mid-rapidity

Physics insights from multiplicity?

- Glauber-Gribov 0.55 gives constant per-participant yields and scaling at $\eta=0$
 - does not necessarily mean Glauber-Gribov is the "right" model
- Rather, emphasizes the sensitivity of the measurement to geometric model

2. Charged particle R_{pPb}

Track reconstruction & corrections

- Charged tracks in the Inner Detector
 - selected according to a set of quality criteria
 - reconstruction & selection efficiency
 - spectra are also corrected for "fake" tracks

- η-dependent spectra transformed into y^{*}-dependent spectra
 - with the assumption that all tracks are pions
 - MC-derived factor to correct for this assumption
 - very small above 1 GeV
 - included in systematics

p+Pb and pp spectra

- Fully corrected charged hadron spectra
 - vs. y* (also centrality, not shown)
- pp spectrum generated from √sinterpolated 2.76 TeV and 7 TeV data
 - systematic from assuming √s instead of log(s) interpolation

Centrality-dependent R_{pPb}

- R_{pPb} for 0-90% p+Pb collisions show a small enhancement
 - almost no interesting features in the p_T dependence
 - same result in all geometric models (Glauber vs. Glauber-Gribov)

- Substantial split between 0-1% and 60-90% R_{pPb}
 - Cronin peak (invisible in the minimum bias) visible in the 0-1%
 - interpretation of high-p_ behavior depends on the geometric model

 R_{pPb} vs. centrality/η/geometry (I)

R_{pPb} vs. centrality/ŋ/geometry (II)

3. Jet $R_{\text{PPb}}^{\text{PYTHIA}}$ and R_{CP}

Jet selection & corrections

- ATLAS procedure for estimating & subtracting underlying event pedestal
 - developed for Pb+Pb, and successfully benchmarked in pp
- Offline jets are selected by the ATLAS High-Level Trigger
- Measured spectra corrected for finite jet energy resolution
 - Jet yields are conservatively reported in a p_T region where the detector response is UE-independent
 21

Jet R_{CP}, at fixed rapidity

- Jet central/peripheral R_{CP}
 - N_{coll}-weighted ratio, with the 60-90% yields in the denominator
 - Each panel at a different y*
- At mid-rapidity, R_{CP} is suppressed at high-p_T!
 - suppression increases with p_{T}
 - suppression is smooth with ²
 centrality
 - Sequentially stronger suppression at more proton-going rapidities
 - reaching a factor of 5 at y* =

Jet R_{CP} , rapidity dependence (I)

Jet R_{CP} , rapidity dependence (II)

- Replot the data at all rapidities,
 - vs. p = p_T cosh(y^{*})
 - e.g. the total jet energy
- R_{CP} looks the same at all rapidities!
 - R_{CP}(p_T; y^{*}) = R_{CP}(p)
- What is this telling us about the mechanism responsible for the suppression?

Jet R_{pPb}^{PYTHIA}, minimum bias

- Jet R_{pPb}PYTHIA
 - for 0-90% *p*+Pb events
 - made with a PYTHIA reference
- Data at all rapidities consistent with a small (10%) enhancement
 - but no strong p_T, and rapiditydependent modification
- How can this be reconciled with the R_{CP}?

Jet R_{pPb}^{PYTHIA}, centrality dependence

- Jet R_{pPb}PYTHIA
 - for 0-10%, 20-30% and
 60-90% p+Pb events
 - made with a PYTHIA reference
- Suppression in central events
- Enhancement in peripheral events
 - similar pattern at all y*
- The combination of the two results in a suppressed R_{CP}

A word on centrality "bias"

- Much discussion of how the centrality variable may be affected by the presence of a hard process
 - e.g. instead of just geometry
 - not (quite) the scope of this talk
- Any explanation of the data as a "centrality bias" must:
 - explain the strong and surprising rapidity dependence
 - y* = -4 bin is 7 units of rapidity away from the Pb-going FCal!
 - explain the p_{T} dependence
 - explain the *sign* of the effect
 - all studies suggest we may be overestimating the yields in central collisions, if anything

Conclusion

- Summary of centrality-dependent *p*+Pb measurements by ATLAS
- 1. Total charged particle multiplicity
 - selecting on centrality changes the shape of $dN_{ch}/d\eta$
 - considering fluctuations in σ_{NN} has implications for observed N_{part}-scaling
- 2. Charged particle nuclear modification factor
 - non-trivial rapidity & centrality dependence, including a Cronin peak
- 3. Jet nuclear modification factors
 - jet yields are strongly modified in a p_T and rapidity-dependent way
 - trends at all rapidities are consistent with a function of the total jet energy
 - enhancement in peripheral collisions and suppression in central ones

\Rightarrow <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults</u> \leftarrow

Backup: ATLAS vs. ALICE multiplicity

Backup: PHOBOS multiplicity vs. centrality

30

Backup: ATLAS vs. ALICE R_{pPb} د د 1.6

31