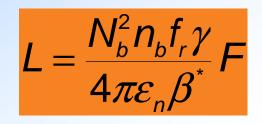
SLHC Accelerator and Injector Upgrades

Lyn Evans


SLHC-PP kick-off meeting, CERN 9 April 2008

Peak Luminosity

- **N**_b number of particles per bunch
- **n**_b number of bunches
- **f**_r revolution frequency
- ε_n normalised emittance
- β^* beta value at lp
- **F** reduction factor due to crossing angle

Goal of "Phase I" upgrade:

Enable focusing of the beams to $\beta^*=0.25$ m in IP1 and IP5, and reliable operation of the LHC at double the operating luminosity on the horizon of the physics run in 2013.

Scope of "Phase I" upgrade:

- 1. Upgrade of ATLAS and CMS experimental insertions. The interfaces between the LHC and the experiments remain unchanged at \pm 19 m.
- 2. Replace the present triplets with wide aperture quadrupoles based on the LHC dipole cables (Nb-Ti) cooled at 1.9 K.
- 3. Upgrade the D1 separation dipole, TAS and collimation system so as to be compatible with the inner triplet aperture.
- 4. The cooling capacity of the cryogenic system and other main infrastructure elements remain unchanged.
- 5. Modifications of other insertion magnets (e.g. D2-Q4) and introduction of other equipment in the insertions to the extent of available resources.

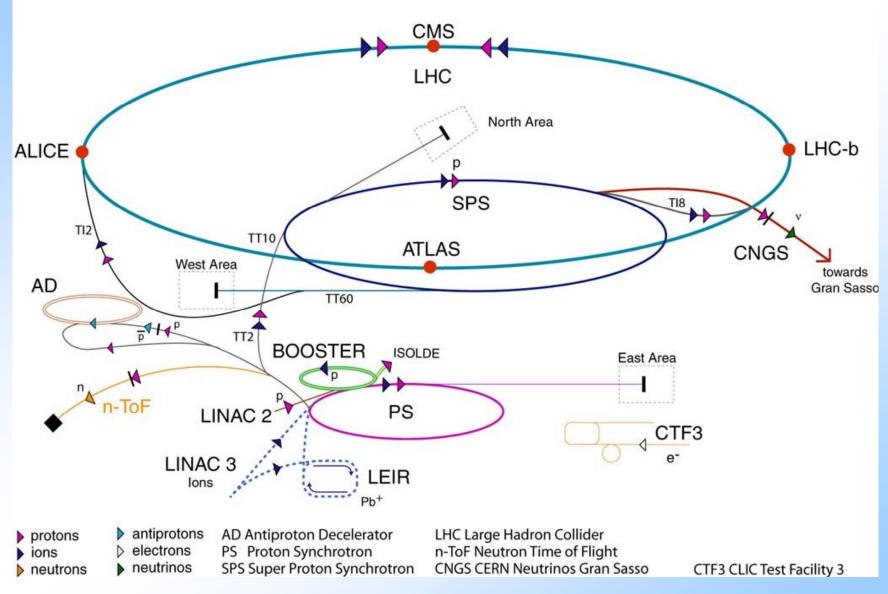
Several departments are involved in the "Phase I" project:

AT Department: low-beta quadrupoles and correctors, D1 separation dipoles, magnet testing, magnet protection and cold powering, vacuum equipment, QRL modifications.

AB Department: optics and performance, power converters, instrumentation, TAS and other beam-line absorbers, ...

TS Department: cryostat support and alignment equipment, interfaces with the experiments, installation, design effort, ...

SLHC-PP collaborators.


Milestones:

Conceptual Design Report	mid 2008
Technical Design Report	mid 2009
Model quadrupole	end 2009
Pre-series quadrupole	2010
String test	2012
Installation	shutdown 2013

CERN accelerator complex

Present limitations

1. Lack of reliability:

<u>Ageing</u> accelerators (PS is 48 years old !) operating far beyond initial parameters

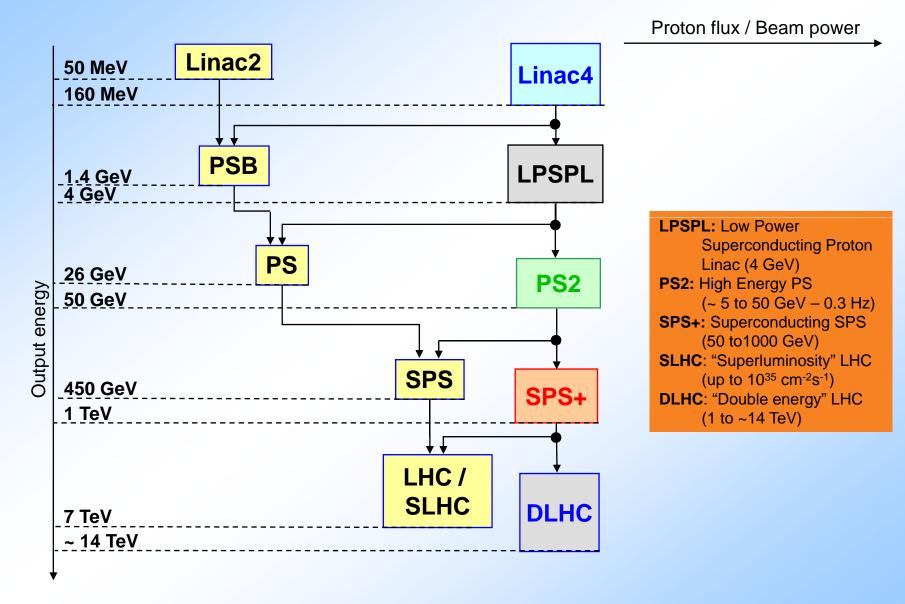
need for new accelerators designed for the needs of SLHC

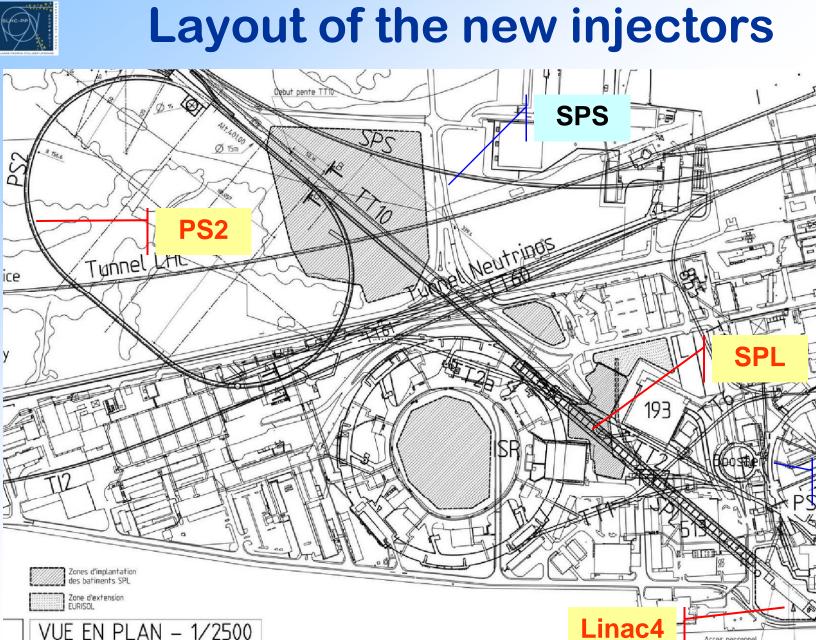
2. Main performance limitation:

Excessive incoherent space charge tune spreads DQSC at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the high required beam brightness N/e*.

$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot \frac{R}{\beta \gamma^2}$$

with N_b : number of protons/bunch $\mathcal{E}_{X,Y}$: normalized transverse emittances R: mean radius of the accelerator $\beta\gamma$: classical relativistic parameters


need to increase the injection energy in the synchrotrons


- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

Upgrade components

and a

PS

Acces materiel

Linac 4

Acces personnel

150

Direct benefits of the new linac

Stop of Linac2:

- End of recurrent problems with Linac2 (vacuum leaks, etc.)
- End of use of obsolete RF triodes (hard to get + expensive)

Higher performance:

- Space charge decreased by a factor of 2 in the PSB
 - => potential to double the beam brightness and fill the PS with the LHC beam in a single pulse,
 - => easier handling of high intensity. Potential to double the intensity per pulse.
- Low loss injection process (Charge exchange instead of betatron stacking)
- High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)

First step towards the SPL:

• Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

Benefits for users of the PSB

Good match between space charge limits at injection in the PSB and PS

=> for LHC, no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS More intensity per pulse available for PSB beam users (ISOLDE) – up to 2[´]

More PSB cycles available for other uses than LHC

Direct benefits of the LPSPL + PS2

Stop of PSB and PS:

- End of recurrent problems (damaged magnets in the PS, etc.)
- End of maintenance of equipment with multiple layers of modifications
- End of operation of old accelerators at their maximum capability
- Safer operation at higher proton flux (adequate shielding and collimation)

Higher performance:

- Capability to deliver 2.2' the ultimate beam for LHC to the SPS
 - => potential to prepare the SPS for supplying the beam required for the SLHC,
- Higher injection energy in the SPS + higher intensity and brightness
 => easier handling of high intensity. Potential to increase the intensity per pulse.

First step towards the SPL:

• Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

Benefits for users of the LPSPL and PS2

More than 50 % of the LPSPL pulses will be available (not needed by PS2)

=> New nuclear physics experiments – extension of ISOLDE (if no EURISOL)... Upgraded characteristics of the PS2 beam wrt the PS (energy and flux) Potential for a higher proton flux from the SPS

Stage 2': SPL

Upgrade the LPSPL into an SPL (multi- MW beam power at 2-5 GeV):

- 50 Hz rate with upgraded infrastructure (electricity, water, cryoplants, ...)
- 40 mA beam current by doubling the number of klystrons in the superconducting part)

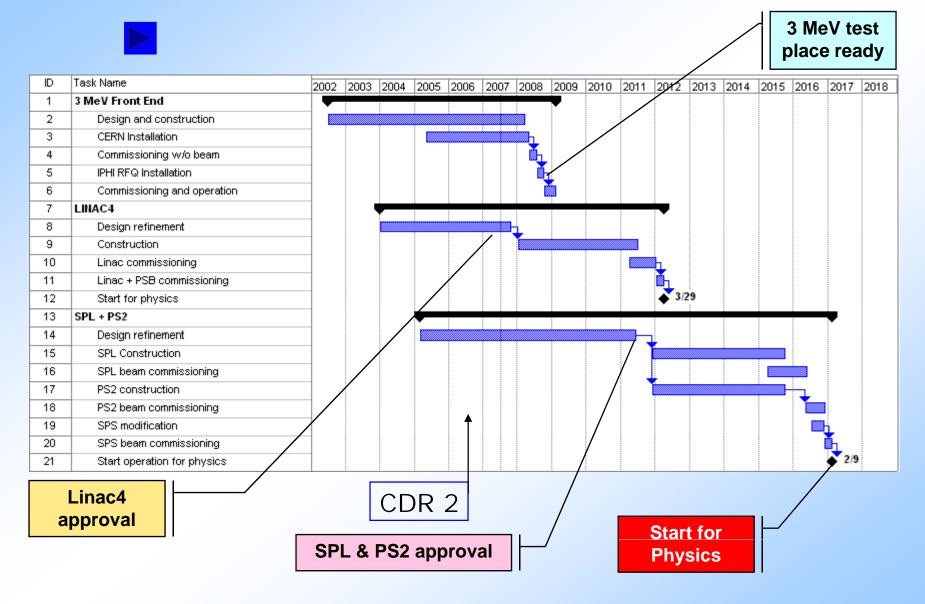
Possible users

• EURISOL (2nd generation ISOL-type RIB facility)

=> special deflection system(s) out of the SPL into a transfer line

=> new experimental facility with capability to receive 5 MW beam power

=> potential of supplying b-unstable isotopes to a b-beam facility...


Neutrino factory

=> energy upgrade to 5 GeV (+70 m of sc accelerating structures)
 => 2 fixed energy rings for protons (accumulator & compressor)
 => accelerator complex with target, m capture-cooling-acceleration (20-50 GeV) and storage

