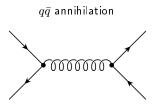
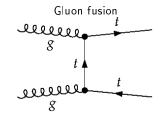
Charge asymmetry of heavy quarks at hadron colliders

J. Haldemann University of Bern M. Guarguaglini University of Pisa


HASCO Summer School


July 29, 2014

J. Haldemann, M. Guarguaglini Charge asymmetry of heavy quarks at hadron colliders HASCO Summer School

Introduction

• Two possible processes for $t\bar{t}$ production:

- Only at first order tt
 production is totally
 symmetric because the gluon
 doesn't 'remember' the
 direction of the initial state
 quarks.
- Gluon fusion is always totally symmetric, because we can't distinguish between the initial state gluons.

Introduction

- The asymmetry in tt production is predicted by the SM. Deviations from the theoretical values of the asymmetry would be a sign for physics beyond SM.
- > SM predicts only a small asymmetry of around $\sim 5\%$.
- ▶ But previous measurements at TEVATRON showed that there is an asymmetry up to 15% for the differential distribution at certain angles.

The origin of the charge asymmetry

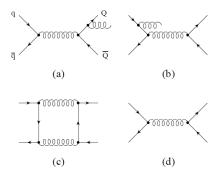


Figure: Interference of final-state (a) with initial-state (b) gluon bremsstrahlung and interference of the box (c) with the Born diagram (d).

The origin of the charge asymmetry

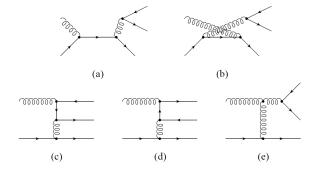
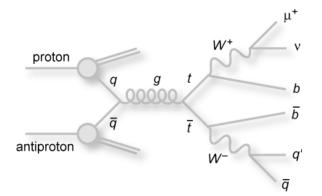


Figure: Origin of the charge asymmetry through flavor excitations. With contributions to the cross section of α_s^3 .

The origin of the charge asymmetry

Sum the amplitudes of the Feynman diagrams with indistinguishable final and initial states:


$$P = (A_1 + A_2) \cdot (A_1 + A_2)^* = |A_1|^2 + \operatorname{Re}(2A_1A_2^*) + |A_2|^2 \quad (1)$$

HASCO Summer School

• This introduces an asymmetric interference term $2A_1A_2^*$.

How to investigate the asymmetry?

We can tag top quarks through their decay $t \rightarrow b W^+$

Tagging

There are three possible final states: A (all jets), B (lepton+jets), C (dilepton).

	A	B	C
b-jet	2	2	2
Hadronic jets	4	2	0
Leptons (high p_T)	0	1	2
Missing p_T	No	Yes	Yes

- Channel A has a large background due to W + jets and multijets production.
- Note: Consider efficiency and purity of b-tagging ($\epsilon \sim 60\%$).
- Finally reconstruct the invariant mass of the top quark through the analysis of the decay products (special software required).

(日) (四) (日) (日)

Differential asymmetry

$$\hat{A}(\cos\hat{\theta}) = \frac{N_t(\cos\hat{\theta}) - N_{\bar{t}}(\cos\hat{\theta})}{N_t(\cos\hat{\theta}) + N_{\bar{t}}(\cos\hat{\theta})}$$
(2)

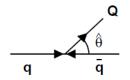


Figure: $\hat{\theta}$ is the top production angle in the restframe of $q\bar{q}$.

Because of charge conjugation symmetry (requires CP conservation):

$$N_{\bar{t}}(\cos \hat{\theta}) = N_t(-\cos \hat{\theta}) \Rightarrow \hat{A}(\cos \hat{\theta})$$
 is a F-B asymmetry.

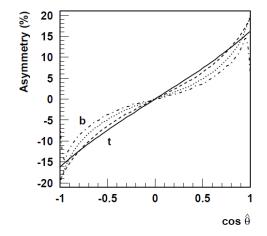


Figure: Differential charge asymmetry in top quark pair production for fixed partonic COM energy $\sqrt{\hat{s}} = 400$ GeV (solid), 600 GeV (dashed) and 1 TeV (dotted); b-quark with 400 GeV (dashed-dotted).

Integrated charge asymmetry

$$\left\langle \hat{A} \right\rangle = \frac{N_t(\cos\hat{\theta} \ge 0) - N_{\bar{t}}(\cos\hat{\theta} \ge 0)}{N_t(\cos\hat{\theta} \ge 0) + N_{\bar{t}}(\cos\hat{\theta} \ge 0)} \tag{3}$$

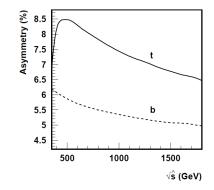


Figure: Integrated charge asymmetry for top and bottom quark pair.

J. Haldemann, M. Guarguaglini HASCO Summer School Charge asymmetry of heavy quarks at hadron colliders

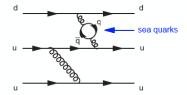
Lepton asymmetry

In addition to the tt-based asymmetries, the TEVATRON experiments measure asymmetries based on the rapidities of the charged leptons from the t decay.

$$A_{FB}^{l} = \frac{N(q_{l}y_{l} > 0) - N(q_{l}y_{l} < 0)}{N(q_{l}y_{l} > 0) + N(q_{l}y_{l} < 0)}$$
(4)

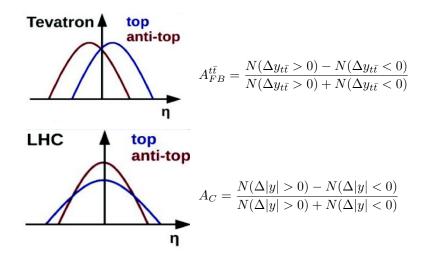
$$A_{FB}^{ll} = \frac{N(\Delta y_l > 0) - N(\Delta y_l < 0)}{N(\Delta y_l > 0) + N(\Delta y_l < 0)}$$
(5)

- \blacktriangleright With q_l the lepton charge and $\Delta y_l = y_{l^+} y_{l^-}$.
- The A^l_{FB} can be measured in the l + jets or dilepton channel, whereas the A^{ll}_{FB} requires the two charged leptons and is measured only in the dilepton channel.


LHC vs. TEVATRON

► **TEVATRON**: *pp* accelerator, colliding valence quarks, well defined momenta.

$$f_{u}^{(p)}(x) = f_{\bar{u}}^{(\bar{p})}(x)$$
(6)


LHC: pp accelerator, valence quarks colliding with sea-quark, so momenta following PDF distribution.

$$f_{u}^{(p)}(x) \neq f_{\bar{u}}^{(p)}(x)$$
 (7)

HASCO Summer School

LHC vs. TEVATRON

J. Haldemann, M. Guarguaglini Charge asymmetry of heavy quarks at hadron colliders > < = > < = >

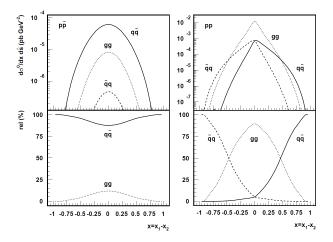
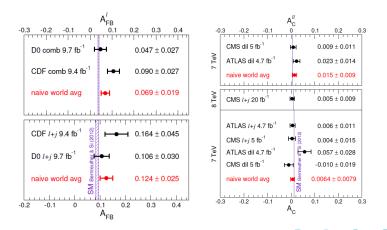



Figure: Differential cross sections and relative amount of $q\bar{q}$, $\bar{q}q$, gg initiated processes as functions of $x_1 - x_2$, for $\sqrt{s} = 1.8$ TeV in $p\bar{p}$ (left) and $\sqrt{s} = 14$ TeV in pp (right) collisions with $\sqrt{\hat{s}} = 400$ GeV.

Summary

 Experimental results from LHC and TEVATRON are so far compatible with SM expectations.



J. Haldemann, M. Guarguaglini Charge asymmetry of heavy quarks at hadron colliders HASCO Summer School

 Today's uncertainties are way too large to say the window for physics beyond SM is already closed.

The next run of the LHC with higher energy and greater luminosity should provide better accuracy...

References

- Charge asymmetry in hadroproduction of heavy quarks, J.H. Kühn, G. Rodrigo, 1998, arXiv:hep-ph/9802268v2
- Charge asymmetry of heavy quarks at hadron colliders, J.H. Kühn, G. Rodrigo, 1998, arXiv:hep-ph/9807420v1
- Asymmetries in top quark pair production, J.A. Aguilar-Saavedra et al., 2014, arXiv:1406.1798 [hep-ph]

Backup Slide

TABLE I. Expected and observed numbers of signal and background events assuming a $t\bar{t}$ production cross section $\sigma_{t\bar{t}} = 7.45$ pb and $M_{top} = 172.5$ GeV/ c^2 .

	0-tag	1-tagL	1-tagT	2-tagL	2-tagT
W + jets	703 ± 199	170 ± 60	102 ± 37	11.6 ± 4.9	8.4 ± 3.5
Z + jets	52.3 ± 4.4	8.9 ± 1.1	5.9 ± 0.7	0.8 ± 0.1	0.5 ± 0.1
Single top	4.8 ± 0.5	10.5 ± 0.9	6.8 ± 0.6	2.2 ± 0.3	1.7 ± 0.2
Diboson	60.3 ± 5.6	11.1 ± 1.4	8.5 ± 1.1	1.0 ± 0.2	0.8 ± 0.1
Multijets	143 ± 114	34.5 ± 12.6	20.7 ± 16.6	4.4 ± 2.5	2.5 ± 2.4
Background	963 ± 229	235 ± 61	144 ± 41	19.9 ± 5.5	13.8 ± 4.2
tī signal	645 ± 86	695 ± 87	867 ± 108	192 ± 30	304 ± 47
Expected	1608 ± 245	930 ± 106	1011 ± 115	212 ± 30	318 ± 47
Observed	1627	882	997	208	275