Search for CP violation in neutral B meson decays

Felix Wiebe and Mohammad Wadud

Contents

- 1. CP Violation
- 2. B mesons
- 3. CP Violation in B meson decays
- 4. Results

C and P Operators

 Charge conjugation (C) replaces a particle by its antiparticle:

$$p \to \bar{p}$$

Parity (P) reverses the spatial coordinates:

$$(t, \vec{x}) \rightarrow (t, -\vec{x})$$

CP Transformation

 CP transformation replaces a particle by its antiparticle and takes its mirror image

 Intuitively, we expect physics to remain the same under CP transformation

Symmetry Violation

However, CP symmetry is violated in weak interactions.

"If you don't like it, go somewhere else, to another universe!" – Richard Feynman

CKM Matrix

- Quarks change flavour through charged weak interactions (W^{\pm})
- The weak eigenstates are constructed by rotating the mass eigenstates with the Cabbibo-Kobayashi-Maskawa (CKM) matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{\text{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CP Symmetry

The charged current part of the SM Lagrangian is given by:

$$\mathcal{L}_{CC} = -\frac{g}{2\sqrt{2}} \Big[(V_{CKM})_{ij} \, \bar{u}_i W_{\mu}^+ \gamma^{\mu} (1 - \gamma^5) d_j + (V_{CKM}^*)_{ij} \, \bar{d}_j W_{\mu}^- \gamma^{\mu} (1 - \gamma^5) u_i \Big]$$

• Under CP transformation, the Lagrangian becomes:

$$\mathcal{L}_{\text{CC}}^{\text{CP}} = -\frac{g}{2\sqrt{2}} \Big[(V_{\text{CKM}})_{ij} \, \bar{d}_j W_{\mu}^- \gamma^{\mu} (1 - \gamma^5) u_i + (V_{\text{CKM}}^*)_{ij} \, \bar{u}_i W_{\mu}^+ \gamma^{\mu} (1 - \gamma^5) d_j \Big]$$

CP symmetry requires real matrix elements:

$$(\mathbf{V}_{\mathrm{CKM}}^*)_{ij} = (\mathbf{V}_{\mathrm{CKM}})_{ij}$$

CP Violation

The standard parametrisation of the CKM matrix is:

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

• The phase factor δ leads to CP Violation.

Neutral B Meson Mixing

B mesons oscillate between particle and antiparticle

 The Schrodinger equation governs the time evolution of the flavour eigenstates:

$$i\frac{\partial}{\partial t} \begin{pmatrix} |\mathbf{B}_{\mathbf{q}}^{0}\rangle \\ |\bar{\mathbf{B}}_{\mathbf{q}}^{0}\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} |\mathbf{B}_{\mathbf{q}}^{0}\rangle \\ |\bar{\mathbf{B}}_{\mathbf{q}}^{0}\rangle \end{pmatrix}$$

Neutral B Meson Mixing

 Diagonalising the Hamiltonian gives mass eigenstates in terms of flavour eigenstates:

$$|B_{L}\rangle = p|B_{q}^{0}\rangle + q|\bar{B}_{q}^{0}\rangle$$

$$|B_{H}\rangle = p|B_{q}^{0}\rangle - q|\bar{B}_{q}^{0}\rangle$$

These states evolve as:

$$|B_{L}(t)\rangle = e^{-iM_{L}t}e^{-\frac{\Gamma_{L}}{2}t}|B_{L}\rangle$$

$$|B_{H}(t)\rangle = e^{-iM_{H}t}e^{-\frac{\Gamma_{H}}{2}t}|B_{H}\rangle$$

Neutral B meson decay

Neutral B mesons have several decay modes.

• We study the decay channel $B_s^0 \to J/\psi \phi$:

CP violation in direct decay

- Decay amplitudes depend on CKM matrix elements
- CP violation leads to different decay rates for the process $B_s^0 \to J/\psi \phi$ and its CP conjugate $\overline{B_s^0} \to J/\psi \phi$.
- To characterise the degree of violation, we define the asymmetry parameter:

$$\mathcal{A}_{CP} = \frac{\Gamma(\bar{B}_{q}^{0} \to f) - \Gamma(\bar{B}_{q}^{0} \to \overline{f})}{\Gamma(\bar{B}_{q}^{0} \to f) + \Gamma(\bar{B}_{q}^{0} \to \overline{f})}$$

Mixing Induced CP Violation

• Direct decay $B_S^0 \to J/\psi \phi$ B_q^0 interferes with oscillation $B_S^0 \leftrightarrow \overline{B_S^0}$ and subsequent decay $\overline{B_S^0} \to J/\psi \phi$.

This gives rise to time-dependent CP asymmetry.

Mixing Induced CP Violation

The time-dependent asymmetry parameter is given by:

$$\mathcal{A}_{\mathrm{CP}}(t) = \frac{-\eta_{\mathrm{J/\!\psi\phi}} \sin{(\phi_s)} \sin{(\Delta m_{\mathrm{s}} t)}}{\cosh{(\frac{\Delta \Gamma_{\mathrm{s}}}{2} t)} - \eta_{\mathrm{J/\!\psi\phi}} \cos{(\phi_s)} \sinh{(\frac{\Delta \Gamma_{\mathrm{s}}}{2} t)}}$$

$$\Delta m = \mathrm{M}_{\mathrm{H}} - \mathrm{M}_{\mathrm{L}}$$

$$\Delta \Gamma = \Gamma_{\mathrm{L}} - \Gamma_{\mathrm{H}}.$$

 ϕ_s arises from the interference between direct and indirect decay

LHC Measurements

- Data collected by the ATLAS detector from LHC pp collisions has been used to determine
 - asymmetry phase $\phi_{\scriptscriptstyle S}$
 - rate difference $\Delta\Gamma_S = \Gamma_L \Gamma_H$
 - mean rate $\Gamma = \frac{\Gamma_L + \Gamma_H}{2}$
- Experiments performed with collision parameters:

$$\sqrt{s} = 7 \text{ TeV}$$

Integrated luminosity 4.9 fb⁻¹

Results

$$\phi_s = 0.22 \pm 0.41 \text{ (stat.)} \pm 0.10 \text{ (syst.)} \text{ rad}$$

$$\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.010 \text{ (syst.)} \text{ ps}^{-1}$$

$$\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \text{ ps}^{-1}$$

Results

 Measurements consistent with standard model predictions

Danke!