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Bayesian vs. Frequentist

Bayesian vs. Frequentist

Frequentist approach

Ratio between the number of times an event happens in a run
and the total number of trials.

The experiment has to be done a large number of times
(ideally infinite).

It assumes that the process happens with the same probability
every time.

Very easy to apply once the conditions are satisfied.
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Bayesian vs. Frequentist

Bayesian vs. Frequentist

Bayesian approach

Probabilities have the intuitive meaning of the degree of belief
that an event will occur.

It has a subjective nature (Probabilities depend on our state
of knowledge).

Leads to the basic laws of probability, once the principle of
coherence is introduced.

Classical results are obtained (e.g. Maximum-Likelihood
principle) under certain assumptions, that now are under
control.
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Bayesian vs. Frequentist

Bayesian vs. Frequentist

Belief and Coherence

There is no single way to derive the basic rules of probability
within the Bayesian approach.

The concept of degree of belief and the principle of coherence
are the usual guide to many Bayesians.

The degree of belief can be easily explained considering a bet;
the larger the degree of belief, the more will be the quantity of
money that the better will pay to receive the same amount of
money.

The principle of coherence states that a person should be
ready to accept bets in either direction, with odd ratios
calculated from those values of probability.
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Bayesian vs. Frequentist

Bayesian vs. Frequentist

Let us clarify this with an example.

If a person states that the probability of Brazil to
win the World Cup is 2/3 (degree of belief ) he
should accept a bet in which he puts 2e and the

opponent 1e.

Also, he should accept a bet against Brazil winning
in which he puts 1e and the opponent 2e (principle

of coherence).
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Standard Rules of Probability

Standard Rules of Probability

Axiom 1: 0 ≤ P(E ) ≤ 1.

Axiom 2: P(Ω) = 1 (Certain Event).

Axiom 3: P(E1 ∪ E2) = P(E1) + P(E2) if
E1 ∩ E2 = ∅.

From the axioms the following properties can be derived:

P(E ) = 1− P(E )

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

P(E1 ∩ E2) = P(E1,E2) = P(E1|E2)P(E2)
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Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem is easily derived from the previous properties:

P(E ∩ H) = P(E |H)P(H) = P(H ∩ E ) = P(H|E )P(E )

⇒ P(H|E ) =
P(E |H)P(H)

P(E )

The new condition E (experiment) alters our belief in H
(hypothesis) using as an updating factor the probability of E
given H.

Symmetric treatment of expressions concerning hypothesis
and observations.
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Bayes’ Theorem

Bayes’ Theorem

Several Hypothesis

Things became more interesting when we consider a set of
hypothesis Hj that all together are:

1 ∪jHj = Ω⇒
∑

j P(Hj) = 1 (Exhaustive).

2 Hj ∩ Hk = ∅ if j 6= k (Exclusive).

For the complete class H the probability of event E is obtained by
the summation over all possible hypothesis that can produce E .

P(E ) =
∑
j

P(E ,Hj) =
∑
j

P(E |Hj)P(Hj)
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Bayes’ Theorem

General Case

In the general case, we have several observations or experiments Ei

and we have to include our current state of knowledge,
generalizing the formula:

P(Hj |Ei , I ) =
P(Ei |Hj , I )P(Hj |I )

P(Ei |I )

The denominator P(Ei |I ) can be difficult to evaluate, so it is
usually written in terms of the conditional probability P(Ei |Hj , I ),
making evident that it is just a NORMALIZATION FACTOR.

P(Hj |Ei , I ) =
P(Ei |Hj , I )P(Hj |I )∑
k P(Ei |Hk , I )P(Hk |I )
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Importance of Priors

Importance of Priors

P(Hj |Ei , I ) ∝ P(Ei |Hj , I ) P(Hj |I )
Posterior Likelihood Prior

Priors are seen by those critical of the Bayesian approach as the
major weakness of it.

Bayesian supporters see them as one of the advantages, because
they explicitly admit the existence of prior information.

Powerful because they allow to deal with realistic situations in
which previous information can be taken into account.

Crucial because we need them to make probability inversions via
Bayes’ Theorem.

There are not prescriptions for the choice of priors, it is a highly
debated issue among Bayesians.
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Choice of Priors

Choice of Priors

The prior should tell us where the probability is concentrated, but
without taking too seriously the details.

Priors have to contain physical bounds (e.g. mass≥ 0). Remember
that where the prior is zero the posterior will be zero.

It is important not to fully suppress unexpected possibilities (to
accommodate ‘surprises’).

What matters is the gross value of the pdf and the influence on
the posteriors.

Mathematically convenient!.
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Choice of Priors

Choice of Priors

If we consider the outcome of measuring the temperature at this
room with a digital thermometer with one degree resolution, there
are some values of the thermometer display you are more confident

to read.

A flat distribution is not a good
prior, it doesn’t capture this
information. It can be the prior
for a person with no knowledge.
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Choice of Priors

Choice of Priors

If we consider the outcome of measuring the temperature at this
room with a digital thermometer with one degree resolution, there
are some values of the thermometer display you are more confident

to read.

It can be modeled better using a
Gaussian distribution, in which
we can introduce our degree of
belief.
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Conjugate Priors

Conjugate Priors

Solving analytically a problem is often difficult. Modeling priors
has been traditionally a compromise between a realistic model and
mathematical simplicity.

One can choose as a prior a function such as the posterior belongs
to the same family as the prior. In that case it is called a
CONJUGATE PRIOR.

For example, given a Gaussian likelihood and choosing a Gaussian
prior, the posterior is still a Gaussian. The Gaussian distribution is
auto-conjugate.
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Conjugate Priors

Conjugate Priors

Useful Conjugate Priors

In this table are shown the most used conjugate priors with their
respective likelihoods and posteriors:



Introduction Priors Conclusions

Coin Flipping

Coin Flipping

Coin Flipping

Suppose we want to know if a coin is fair tossing it several times;
i.e., we must infer p the probability of head.

Frequentist approach:

p = lim
N→+∞

h

N

Bayesian approach:

P(p|h,N) =
P(h|N, p)P(p)∫
dp P(h|N, p)P(p)

∝ P(h|N, p)P(p)

h = number of heads, N = number of trials
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Coin Flipping

Coin Flipping

Likelihood: P(h|N, p) =
(N
h

)
ph(1− p)N−h Binomial!

Conjugate prior: B(p; r , s) = pr−1(1−p)s−1

β(r ,s)

Where β(r , s) is Euler’s Beta function that can be written as:

β(r , s) =
Γ(r)Γ(s)

Γ(r + s)
=

(r − 1)!(s − 1)!

(r + s − 1)!

Mean value and variance are:

E (p) =
r

r + s
, σ2(p) = E (p)2

s

r

1

1 + r + s

For r = s = 1 we have a flat distribution!
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Coin Flipping

Coin Flipping

Every coin toss updates our
knowledge, changing the prior for
the next flip.
If we start with no preference
about the value of p we can use
a flat prior (0 ≤ p ≤ 1).
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Coin Flipping



Introduction Priors Conclusions

Coin Flipping

Coin Flipping
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Coin Flipping
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Coin Flipping
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Coin Flipping
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Conclusions

Bayesian statistics is very close to the way of reasoning of
physicists.

It generalized frequentist statistics, demonstrating classical results
under well determined assumptions, and including the subjective
nature of probability.

Although still debatable,priors are one of the most powerful
features of the Bayesian approach. They allow us to include
physical bounds and to update our state of knowledge after each
experiment.

Usually, after a large number of experiments the dependence on
the prior is lost.

Its choice has to be a compromise between being realistic and
simplicity (with computers and MC integration this is not too
important).
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