

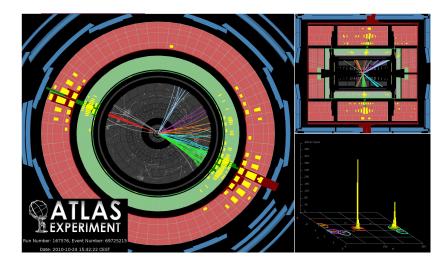
MEASUREMENT OF DIJET CROSS-SECTIONS IN PP COLLISIONS AT 7 TEV CENTRE-OF-MASS ENERGY USING THE ATLAS DETECTOR

Guido Andreassi, George Barnes

24/07/2014

What?			
Di-iet events			

What? - Di-jet events



	Why?		
Searches			

Why? - Searches

- search for new resonances;
- constrain PDFs;
- ► measure pp → dijet cross-section.

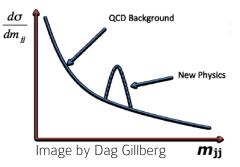


Figure : Peaks on QCD background, indicate the existence of new particles.

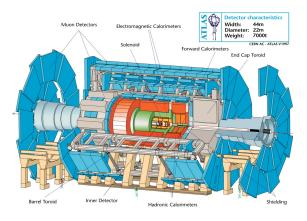
How?

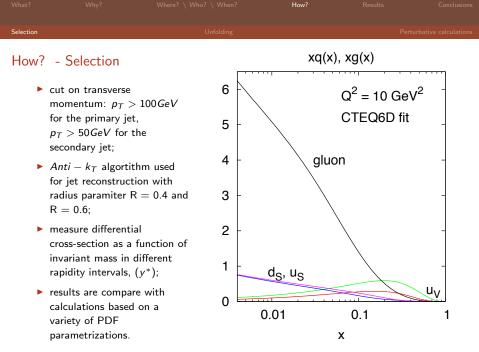
Conclusions

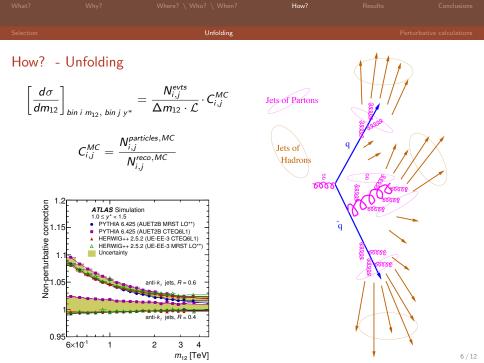
The ATLAS detector

Where? \setminus Who? \setminus When? - The ATLAS detector

- 2011 dataset;
- $\sqrt{s} = 7 \, TeV$;
- ▶ 4.5*fb*⁻¹;





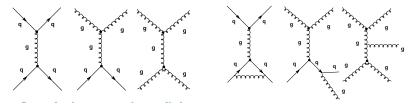


		How?		
Selection	Unfolding		Pert	urbative calculations

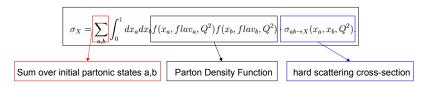
How? - Perturbative calculations

Calculation of the hard scattering cross-section up to NLO

 $(A \cdot \alpha_S^2 + B \cdot \alpha_S^3 + H.O.)$



Measurements and calculations are split into rapidity intervals, (y^*) for more accurate comparison (Bjorken x).



		Results	
Cross section			

Results - Cross section

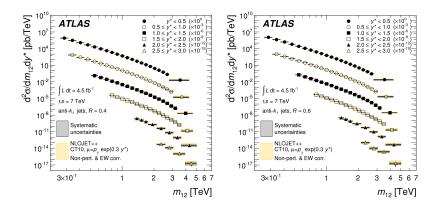


Figure : Dijet double-differential cross-section for $anti-k_t$ jets with radius parameter R = 0.4 and R = 0.6, shown as a function of dijet mass in different ranges of y^* .

Cross section

Results - Theory/Data

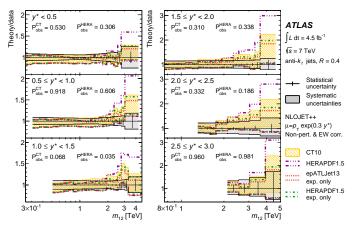


Figure : Ratio of the NLO QCD predictions of NLOJet++ to the measurements of the dijet double-differential cross-section as a function of dijet mass in different ranges of y^* .

How?

Results

Conclusions

Theory/Data

Cross section

Results - Theory/Data

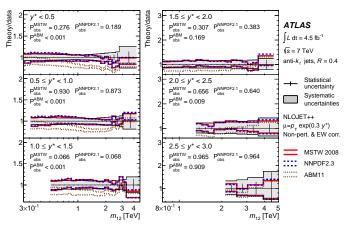
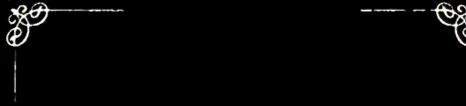


Figure : Ratio of the NLO QCD predictions of NLOJet++ to the measurements of the dijet double-differential cross-section as a function of dijet mass in different ranges of y^* .

		Conclusions

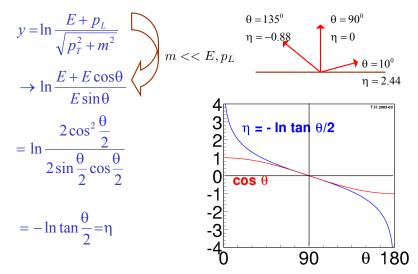
- no hints of new particles;
- good agreement with PDF parametrizations (except for one...);
- possible future application of this method (highest energy dijet cross-section measurement so far).



The End

BACKUP SLIDES

Pseudo-rapidity \rightleftharpoons rapidity



Rapidity invariance under longitudinal boosts

$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} = \ln \frac{\sqrt{E + p_L}}{\sqrt{E - p_L}} \cdot \frac{\sqrt{E + p_L}}{\sqrt{E + p_L}} = \ln \frac{E + p_L}{\sqrt{E^2 - p_L^2}}$$
$$= \ln \frac{E + p_L}{\sqrt{p_T^2 + m^2}}$$

Boost along z axis:

$$y' = \ln \frac{E' + p'_{L}}{\sqrt{p_{T}^{2} + m^{2}}} = \ln \frac{\gamma (E + \beta p_{L}) + \gamma (p_{L} + \beta E)}{\sqrt{p_{T}^{2} + m^{2}}}$$
$$= \ln[\gamma (1 + \beta) \frac{E + p_{L}}{\sqrt{p_{T}^{2} + m^{2}}}] = y + \ln\gamma (1 + \beta)$$

· rapidity intervals are invariant under longitudinal boost

$$y_1 - y_2 \to y_1' - y_2' = y_1 - y_2$$

 $\frac{\partial \sigma}{\partial y'} = \frac{\partial \sigma}{\partial y}$

Algorithm specification: Anti- k_t • $d_{i,j} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,i}^2})\frac{\Delta R^2}{D^2}$; $d_{i,Beam} = \frac{1}{2}$

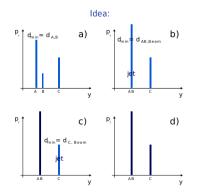
$$p_{T,i}^2$$

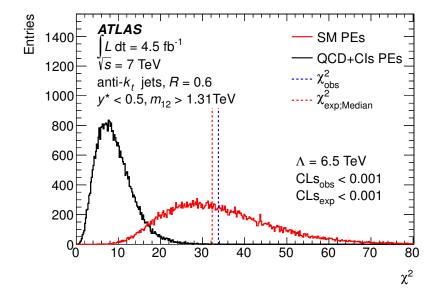
D : algorithm parameter

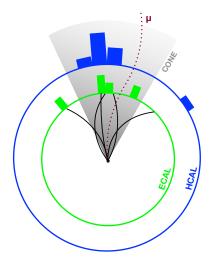
Iterate:

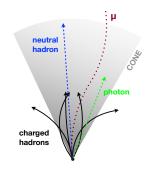
- For every pair of objects i, j calculate d_{min} = min(d_{i,j}, d_{i,beam})
- If d_{min} = d_{i,j} recombine objects Else i is a jet, remove it from list ^a
- Recombination starts from hard objects

^aATLAS default: inclusive algorithm









$$\label{eq:figure} \textbf{f}_{\textbf{i}}(\textbf{x},\textbf{Q^2}) \left\{ \begin{array}{l} i = u_v, \, d_v, \, g \text{ and sea} \\ x = p_{parton} \, / \, E_{beam} \, \text{ parton momentum fraction} \\ Q^2 = \textbf{momentum transfer} \end{array} \right.$$

How are PDF's determined?

QCD predicts the scale dependence of $f_i(x,Q^2)$ through DGLAP evolution equations BUT does not accurately predict the x-dependence which has non perturbative origin

- 1. the x-dependence is parameterised at a fixed scale Q_0^2 :
 - valence quarks: $f \sim x^{\lambda} (1-x)^{\eta} P(x)$ different parameterisations and
 - sea/gluon: $\mathbf{f} \sim \mathbf{x}^{-\lambda} (\mathbf{1} \mathbf{x})^{\eta} \mathbf{P}(\mathbf{x})$ no.of free parameters used
- f_i(x,Q²) is evolved from Q₀² to any other Q² by numerically solving the DGLAP equations to various orders (LO,NLO, NNLO)
- the free parameters are determined by fit to data from experimental observables (data from HERA experiments H1, ZEUS, fixed target DIS experiments, CDF, D0)