Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in pp Collisions at $\sqrt{s} = 8 \, TeV$ with the ATLAS Detector.

Silvestre Romano and Ishan Pokharel

HASCO summer school

August 1, 2014

Introduction

- ullet Cosmology \Longrightarrow 25% of universe = Dark matter
 - Weakly interacting Massive Particles (WIMP) are one possibility
- The main theoretical characteristics of a WIMP are:
 - Interactions only through the weak nuclear force and gravity,
 - Large mass compared to standard particles
- Search for WIMP particles and their interactions with the SM particles:
 - Effective model to describe pair productions of the WIMPs particles
 - Search at the LHC $pp o \chi \bar{\chi}$
 - χ- nucleon interaction

thermal freeze-out (early Univ.) indirect detection (now)

Introduction (cont.)

- But the final state $\chi \bar{\chi}$ are invisible to the detector
- Only mono-W/Z-boson events decaying hadronically are considered

- Signature W or Z + MET = two merged jets + E_T^{miss}
- W is sensitive to interference for different u/d couplings:
 - C(u) = C(d) destructive interference
 - C(u) = -C(d) constructive interference

Effective interaction

Analogy with the Fermi effective theory of Beta decay

• Fermion: Dirac or Majorana

Scalar: real or complex

 M* characterize the interaction strength of the interactions

Most prominent couplings

Name	Type	Operator	Coefficient
D1	scalar (qq)	$\bar{\chi}\chi \bar{q}q$	m_q/M_*^3
D5	vector	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D8	axial-vector	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D9	tensor	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
D11	scalar (gg)	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
C1	scalar	$\chi^{\dagger}\chi \bar{q}q$	m_q/M_*^2

Experimental setup

- Data recorded with the ATLAS detector at LHC
- $\sqrt{s} = 8 \, TeV$ and $20.3 \, fb^{-1}$ of integrated luminosity

Hadronically decaying W

- The jet candidates are reconstructed using the Cambridge-Aachen algorithm
 - Internal structure characterized by the momentum balance of the two leading subjets

$$\sqrt{y} = \min(p_{T1}, p_{T2}) \Delta R / m_{jet} \tag{1}$$

- The reconstruction of hadronic W boson decays with large-radius jets is validated in a tt-dominated control region with:
 - One muon
 - One large-radius jet $(p_T > 250 \, \text{GeV}, |\eta| < 1.2)$
 - Two additional narrow jets $(p_T > 40 \, GeV, |~\eta~| < 4.5)$ separated from the leading jet
 - At least one b miss tag
 - $E_T^{miss} > 250 \, GeV$

Signal candidate

- Event selection:
 - Inclusive $E_T^{\it miss}$ trigger $\Longrightarrow 99\%$ efficient for events with $E_T^{\it miss} > 150 \, {\it GeV}$
 - At least one large-radius jet
 - $p_T > 250 \, GeV$ (boosted jets)
 - \bullet 50 GeV $< m_{jet} < 120$ GeV
 - $\sqrt{y} > 0.4$
 - ullet Two signal regions: $E_T^{miss} > 350 \, GeV$ and $E_T^{miss} > 500 \, GeV$
- Aditional cuts to suppress background:
 - tt and multijet:
 - ullet More than one narrow jet with $p_T > 40 \, GeV$ and $\mid \eta \mid < 4.5$
 - ullet Not completly overlapping with the large-radious ($\Delta R > 0.9$)
 - $W \rightarrow I\nu$ contribution:
 - ullet electron, photon or muon candidates with $p_T > 10 \, GeV$
 - Detected in the central region

Background composition

- ullet The dominant source of bkg: $Z
 ightarrow
 uar{
 u} + {
 m jets}$ from the initial-state radiation
- W or Z bosons leptonic decays in which the charged leptons fail identification requirements
- Diboson production
- Top quark pair production and single-top production

Process	$E_{\rm T}^{\rm miss} > 350 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 500 {\rm GeV}$
$Z \to \nu \bar{\nu}$	402^{+39}_{-34}	54^{+8}_{-10}
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22^{+4}_{-5}
WW, WZ, ZZ	57-11	$9.1^{+1.3}_{-1.1}$
$t\bar{t}$, single t	39_{-4}^{+10}	$3.7^{+1.7}_{-1.3}$
Total	707^{+48}_{-38}	89+9
Data	705	89

Search in the m_{iet} distribution

- The Combined mono-W-boson and mono-Z-boson signal distribution with m_{χ} =1GeV and M_{\star} =1TeV for the D5 destructive and constructive cases
- Data in agreement with the SM expectation
- Dominating syst. uncertainties:
 - Limited statistics in control samples
 - Theoretical uncertanties
 - ullet Jet and E_T^{miss} reconstruction

Mass scale limits

- Mass scale of the effective theory as function of m_χ at 90% C.L. for various operators
- The values below the corresponding operators are excluded

Mono-W/Z in the χ -N plane

- Limits on χ -nucleons cross sections as funtion of m_{jet} at 90% C.L.
- ullet Spin-independent limits very strong $10^{-42} cm^2$ for vector coupling when u & d have opposite sign
- \bullet Set strong spin-dependent limits $10^{-43} cm^2$ for tensor operator

Conclusion

- Limits on the dark-matter nucleon scattering cross sections
- The valid region of the theory becomes a poor aproximation if the mass of the intermediate state is below the momentum transfered
- The results are compared with measurements from direct detection experiments
- Dark matter production with mono-W/Z-boson extends the limits on the DM-Nucleon cross section in the low mass region
- Limits are also compared to the limits set by ATLAS in the / TeV mono-jet analysis
- For the spin-independient case with oposite-sign couplings, the limits improve 3 order of magnitud with respect to the constructive

Thanks for your atttention!

