Plotting the Differences between Data and Expectation

Seminar Talk by

Laura Zani (University of Pisa) and Riccardo Di Maria (University of Bologna)

HASCO Summer School 2014

Let's start from a PLOT

Some few questions:

 Can you have a precise and immediate visualization of deviation of data?

Let's start from a PLOT

Some few questions:

 Can you have a precise and immediate visualization of deviation of data?

Does the INSET PLOT improve the representation of deviations?

Let's start from a PLOT

Is this kind of INSET PLOT the most efficient way to show significance?

Let's try to focus on different types of

INSET PLOT

Purpose

- The paper focuses on the searching of the most efficient way to present an INSET PLOT
- An inset plot is usually inserted at the bottom of the histogram to explicit the SIGNIFICANCE of data

Outline

- Motivation
- Statistical significance
- Present deviations in Poisson distributed data
- Considering theoretical uncertainty
- Summary

Motivation

- Histograms in logscale
 - Span lots of orders of magnitude
 - Hide differences
 — HIDE SIGNIFICANCE!

INSET PLOT

Intuitive

excess/deficit of data must be evident

Accurate

representing the ACTUAL significance deviation for each bin

Statistical Significance

- DEF: The probability of finding a deviation AT LEAST as big as the one observed in data
- p-value \longrightarrow z-value (deviation espressed in units of σ)

Statistical Significance

- p-value $\leq 0.5 \rightarrow z$ -value ≥ 0
- p-value $> 0.5 \rightarrow z$ -value < 0

How to present DEVIATIONS

- Different types of inset plot
 - The $\frac{D}{B}$ Ratio (relative differences)
 - The $\frac{D-B}{\sqrt{B}}$ Approximation
 - Signed z-values
 - *Final proposal*: plotting signed z-values only if p-value < 0.5

The D/B Ratio

- Assuming Poisson distributed data for each bin
- $R = \frac{D-B}{B}$ immediately show: EXCESS of data, R > 0 DEFICIT of data, R < 0
- DISADVANTAGES:

 - wrong impression of larger fluctuation for low-population bins

WORST WAY TO COMPARE TWO HISTOGRAMS, even if not "wrong" It is just not the right "metric" to express the distance *D - B*, if you want to show <u>immediately</u> the significance of data

The D/B Ratio

• e.g. Considering two histograms with the same R:

• B = 10000
• D = 11000
$$\longrightarrow R = \frac{D-B}{B} = 0.1$$
 \longrightarrow $O = \sqrt{B} = 100$ deviation = 10 σ

The D/B Ratio

Something a bit "surprising":

people continue to use this kind of inset plot (also others) as though they know the drawbacks...

So BE CAREFUL!

28/07/2014 – Students Seminars Laura Zani, Riccardo Di Maria

The $\frac{D-B}{\sqrt{B}}$ Approximation

- Large **B**: Poisson → Gaussian
 - \rightarrow z-value can be approximated by $\frac{D-B}{\sqrt{B}}$
 - mean = B
 - deviation = \sqrt{B}

ADVANTAGE: Differences between data and expectation now expressed in units of σ

Significant deviations clearly visible!

DISADVANTAGE: NOT a good approximation for *low-population bins*

The $\frac{D-B}{\sqrt{B}}$ Approximation $\frac{D-B}{\sqrt{B}}$

Approximation

FAILS

in the last bins!

→ NOT SIGNIFICANCE as it appears in the histogram

Plotting signed z-values

Plotting the exact z-values:

- D > B (EXCESS) \longrightarrow +z-value (p-value < 0.5)
- D < B (DEFICIT) → z-value

DISADVANTAGES

(there is still something confusing)

Problems with Low STATISTICS: very insignificant deficits have negative z-value —> with the sign-flipping they wrongly appear as an excess

(see last bins of the histogram)

Final proposal

plot
signed z-values
only if
p-value < 0.5

- bins with p-value > 0.5 perfectly agree with expectation
 - uninteresting
- Even misleading, as just seen before: no need to plot them!

Final proposal Events

z-value

• ACCURATE not an approximation

INTUITIVE positive values represent EXCESSES negative values represent DEFICITS

No significant deviations hidden (p-value < 0.5 always shown)

 Same treatment of bins with high and low statistics

significance

The Uncertainty

- Any theoretical uncertainty in the BACKGROUND will affect the significance of the observation
- Any additional uncertainty will <u>decrease</u> the significance of the observed deviation
- Sometimes is not useful to show it:
 - Negligible compared to statistical uncertainty
 - Deviations without theoretical uncertainty already not significant enough

Theoretical Uncertainty

- ERROR BARS: shifting B by $\pm \sigma$ and recomputing significance \longrightarrow try scaling your BKG!
- BUT: any uncertainty will decrease significance of

Significance computed by neglecting the *theoretical uncertainty* on the expectation (red histogram) and by including it (blue histogram)

Conclusion

It is possible to improve the PLOT of the differences between DATA and EXPECTATION:

- The useful "metric" should show significance in an accurate and intuitive way
- The exact p-value is computed
 - \rightarrow if < 0.5 mapped into *z-value* \equiv deviation in units of Gaussian standard deviations
- The sign (posítive / negative bars) has to show EXCESS/DEFICIT
- Before claiming discovery for important deviations (z-value > 3-4), it is fundamental to check what happens by including the total uncertainty on the expectation!

Thanks For Your Attention!