Evidence for Top Quark Production in $p\bar{p}$ Collisions at $\sqrt{s}=1.8\,\mathrm{TeV}$

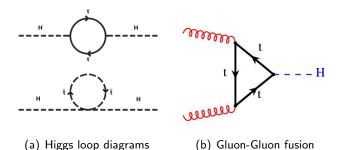
Andreas Ekstedt, Jannik Geisen

28.07.2014

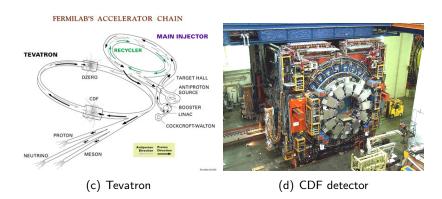
Table of contents

Introduction

CDF experiment


Event selection

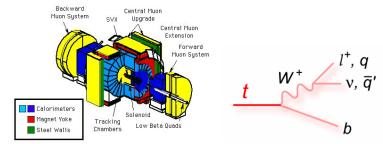
Results


Introduction - Top quark

Why is the top quark important?

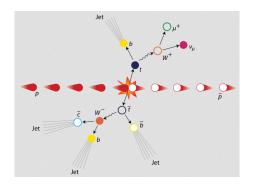
- 1. completes quark model of three generations
- 2. has the highest mass of all known particles, $m_{\rm top} \approx 173\,{\rm GeV}$
- 3. decays before it hadronizes
- 4. has a strong coupling to Higgs boson (loops) → **Higgs search**
- 5. searches beyond the SM

CDF experiment at Tevatron

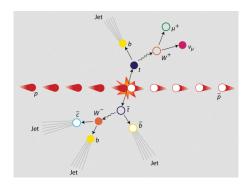


- CDF experiment at Tevatron at Fermilab, Illinois (USA)
- ▶ Hadron collider: $p\bar{p}$ collisions at $\sqrt{s} = 1.8 \, \text{TeV}$
- ▶ Data sample size for this top search: 19.3 pb⁻¹ (1992-1993)

CDF detector


- 1. central tracking chamber (CTC)
 - \rightarrow momenta of charged particles
- 2. EM and hadronic calorimeter covering $|\eta| < 3.6$
 - $\rightarrow \mathcal{E}_{\mathsf{T}}$, electrons and jets
- 3. drift chambers in $|\eta| < 1.0$
 - \rightarrow muons
- 4. silicon vertex detector (SVX)
 - \rightarrow secondary vertices from b and c quark decays

Decay channels



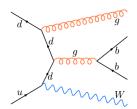
'Always' two \emph{b} jets, ignore τ

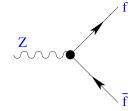
- \rightarrow Three decay channels from W boson decay:
 - 1. All jets: 6 jets in the final state (45%) \rightarrow ignore
 - 2. I+jets: 4 jets, 1 charged lepton (30%)
 - 3. Dilepton: 2 jets, 2 charged leptons (5%)

Kinematics

- ► Expect one isolated lepton with high *P*_T
- ▶ neutrinos \rightarrow huge \mathcal{E}_{T}
- ▶ Dilepton: two leptons with high P_T and opposite charge

still have too much background \rightarrow need additional criteria!


Background events


Dominant background in dilepton channel:

- ► $Z \rightarrow I^+I^ \rightarrow$ exclude $M_{II} \approx M_Z$ region
- ▶ induced \mathcal{E}_T by jet mismeasurement → require large ϕ between \mathcal{E}_T and nearest lepton

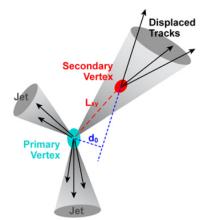
Dominant background in I+jets channel:

▶ W + jets (direct $b\bar{b}$, Z, W^+W^- , fake leptons, ...) → require high number of jets (\geq 3) and **b-tag**!

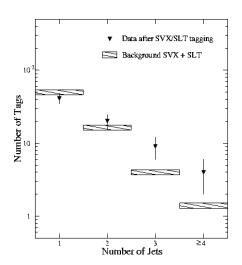
Event selection

1. Dilepton channel

- Require a high energy isolated lepton
- Only the $e\mu$ channel survive the kinematic cuts

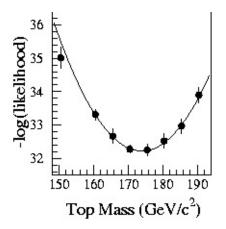

2. Z rejection

- Remove Z events by restricting the $\mu\mu$, ee invariant masses
- ▶ Additional rejection against $Z \to \tau \tau$ require cuts on E_T



B-tagging

- 1. SLT: Use the $b \rightarrow l\nu X$ decay
 - ightharpoonup Low energy leptons ightarrow Easy to distinguish from W decays
 - ▶ But: Possibly misidentify hadron jets as soft-leptons
- 2. SVX: Use vertex-finding algorithm



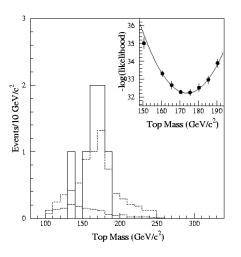
Background discrimiation

Kinematic fits

- ▶ Likelihood fit \rightarrow Estimate M_t
- χ^2 fit \rightarrow Estimate σ

Uncertainty

Estimation:


- ► Monte-Carlo simulations
- Z decay data $Z o \mu^+ \mu^-$

M_{top}	120 GeV/c^2	140 GeV/c^2	160 GeV/c^2	$180 \; {\rm GeV/c^2}$
ϵ_{DIL}	$0.49 \pm .07\%$	$0.66 \pm .07\%$	$0.78 \pm .07\%$	$0.86 \pm .07\%$
ϵ_{SVX}	$1.0 \pm 0.3\%$	$1.5 \pm 0.4\%$	$1.7 \pm 0.5\%$	$1.8 \pm 0.6\%$
ϵ_{SLT}	$0.84 \pm 0.17\%$	$1.1 \pm 0.2\%$	$1.2 \pm 0.2\%$	$1.3 \pm 0.2\%$
$\sigma_{t\bar{t}}^{Theor}$ (pb)	$38.9^{+10.8}_{-5.2}$	$16.9^{+3.6}_{-1.8}$	$8.2^{+1.4}_{-0.8}$	$4.2^{+0.6}_{-0.4}$
$\sigma_{t\bar{t}}^{Expt}(pb)$	$22.7^{+10.0}_{-7.9}$	$16.8^{+7.4}_{-5.9}$	$14.7^{+6.5}_{-5.1}$	$13.7^{+6.0}_{-4.7}$

Expectation and Observation

Channel:	Dilepton	SVX	SLT
$N_{expected}$, $M_{top} = 120 \text{ GeV/c}^2$	3.7 ± 0.6	7.7 ± 2.5	6.3 ± 1.3
$N_{expected}$, $M_{top} = 140 \text{ GeV/c}^2$	2.2 ± 0.2	4.8 ± 1.7	3.5 ± 0.7
$N_{expected}$, $M_{top} = 160 \text{ GeV/c}^2$	1.3 ± 0.1	2.7 ± 0.9	1.9 ± 0.3
$N_{expected}$, $M_{top} = 180 \text{ GeV/c}^2$	0.68 ± 0.06	1.4 ± 0.4	1.1 ± 0.2
Total Background	$0.56^{+0.25}_{-0.13}$	2.3 ± 0.3	3.1 ± 0.3
Observed Events	2	6	7

Result

$$M_{
m top} = 174 \pm 10^{+13}_{-12}\,{
m GeV}$$
 $\sigma_{t\overline{t}}(M_{
m top}) = 13.9^{+6.1}_{-4.8}\,{
m pb}$ significance $= 2.8\sigma$

