Measurement of the $t\overline{t}$ production crosssection using $e\mu$ events with b-tagged jets in pp collisions at \sqrt{s} = 7 and 8 TeV with the ATLAS detector

Michele Michetti and Maria Mironova July 31th Hadron Collider School Göttingen

Outline

- $t\overline{t}$ decay
- ATLAS detector
- Event selection
- $t\overline{t}$ -cross-section
- Results
- Conclusions

Goal: Measuring the $t\bar{t}$ -production cross-section using the decay channel $e\mu$ in pp collisions at 7 and 8 TeV.

 $\rightarrow e\mu$ decay because of the low background levels

$t\overline{t}$ decay

Background:

- Wt (production of W boson and single top quark)
- $Z \rightarrow \tau\tau \rightarrow e\mu + jets (+ 4v)$
- BR(W \rightarrow Iv)=0.1082

ATLAS detector

Event selection

electrons	E_T >25 GeV, η <2.47, Δ R=0.2 for Et and Δ R=0.3 for pt
muon	p_T >25 GeV, $ η $ <2.5 Δ R=0.2 for Et and Δ R=0.3 for pt (for 7TeV) For 8 TeV replaced by cut at I<0.05
jets	b-tagged jets Reconstructed with anti-k _t -algorithm

Events

- ...were required to have at least one reconstructed primary vertex with five tracks
- ...compatible to cosmic rays or bremsstrahlung were removed
- ...had to have exactly one electron and one muon
- → only well reconstructed events

$t\overline{t}$ -cross-section

The tt production cross-section was determined by counting the numbers of opposite-sign e μ events with exactly one (N₁) and exactly two (N₂) b-tagged jets. The event counts can be expressed as:

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1 - C_b\epsilon_b) + N_1^{bkg}$$

$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{bkg}$$

The equations have to be solved numerically yielding σ and ϵ

Results

- Results of cross-section:
- At 7 TeV: $O_{t\bar{t}} = 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \text{ pb}$
- At 8 TeV: $\sigma_{t\bar{t}} = 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 \text{ pb}$
- Ratio: R= 1.326 ± 0.024 ± 0.015 ± 0.049 ± 0.001

Values of ε_b

At 7 TeV: 0.557 ± 0.009 At 8 TeV: 0.540 ± 0.006

Top quark mass determination

Dependence of the cross-section predictions on m:

$$\sigma_{t\bar{t}}^{theo}(m_t^{pole}) = \sigma(m_t^{ref}) \left(\frac{m_t^{ref}}{m_t^{pole}}\right)^4 (1 + a_1 x + a_2 x^2)$$
 With $x = (m_t^{pole} - m_t^{ref})/m_t^{ref}$ $m_t^{ref} = 172.5~GeV$

Extraction by maximising the expression:

$$\mathfrak{L}(m_t^{pole}) = \int G(\sigma'_{t\bar{t}}|\sigma_{t\bar{t}}(m_t^{pole}), \rho_{exp}) \cdot G(\sigma'_{t\bar{t}}|\sigma_{t\bar{t}}^{theo}(m_t^{pole}), \rho_{theo}^{\pm}) d\sigma'_{t\bar{t}}$$

Resulting value:

$$m_t^{pole} = 172.9_{-2.6}^{+2.5} GeV$$

Constraints on stop-pair production

SUSY predicts new particles which are produced in pairs

→ Rise in *tt* yields and missing transverse momentum

Top squark masses between top quark mass and 177 GeV excluded with 95% CL.

Conclusions

- At 7 TeV: 182.9 ± 3.1 ± 4.2 ± 3.6 ± 3.3 pb
- At 8 TeV: 242.4 ± 1.7 ± 5.5 ± 7.5 ± 4.2 pb
- Top quark pole mass m=172.9 GeV
- Top squark masses between top quark mass and 177
 GeV have been excluded at 95% CL.

Thanks for your attention!