Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders: a critical assessment of the work

Garrett Merz¹ Alberto Merchante González^{2 3}

 $^1{\rm Ohio}$ State University, USA $^2{\rm University}$ of Oxford, St Edmund Hall, UK $^3{\rm Universidad}$ Nacional de Educación a Distancia, Madrid, España

HASCO, 2014

- W boson
- Possible SUSY particles
- mSUGRA in LHC
- Fourth lepton generation?

- W boson
- Possible SUSY particles
- mSUGRA in LHC
- Fourth lepton generation?

- W boson
- Possible SUSY particles
- mSUGRA in LHC
- Fourth lepton generation?

- W boson
- Possible SUSY particles
- mSUGRA in LHC
- Fourth lepton generation?

- One decay product is directly observable, the other is not
- Neutrino v_0 is *invisible*; properties must be gleaned from analysis of missing E_T and p_T
- Cannot directly reconstruct mass of W because of this
- But we can get a lower limit
- And hope many events will tend to it (as UA1 & UA2 did)

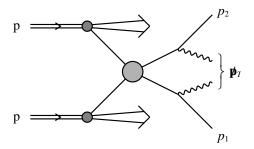
- One decay product is directly observable, the other is not
- Neutrino v_0 is *invisible*; properties must be gleaned from analysis of missing E_T and p_T
- Cannot directly reconstruct mass of W because of this
- But we can get a lower limit
- And hope many events will tend to it (as UA1 & UA2 did)

- One decay product is directly observable, the other is not
- Neutrino v_0 is *invisible*; properties must be gleaned from analysis of missing E_T and p_T
- Cannot directly reconstruct mass of W because of this
- But we can get a lower limit
- And hope many events will tend to it (as UA1 & UA2 did)

- One decay product is directly observable, the other is not
- Neutrino v_0 is *invisible*; properties must be gleaned from analysis of missing E_T and p_T
- Cannot directly reconstruct mass of W because of this
- But we can get a lower limit
- And hope many events will tend to it (as *UA*1 & *UA*2 did)

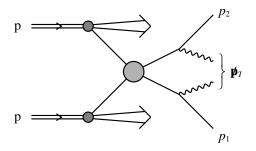
- One decay product is directly observable, the other is not
- Neutrino v_0 is *invisible*; properties must be gleaned from analysis of missing E_T and p_T
- Cannot directly reconstruct mass of W because of this
- But we can get a lower limit
- And hope many events will tend to it (as UA1 & UA2 did)

Transverse Mass (W decays)

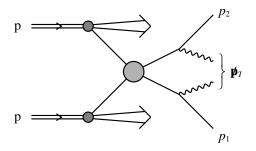

Gives a lower bound for W mass

$$m_T^2 = 2(E_T^e E_T - \mathbf{p}_T^e \cdot \mathbf{p}_T) \tag{1}$$

Lower bound of repeated trials approaches actual mass of W


$$m_T^2 \le m_W^2 \tag{2}$$

NB: Equality only if $y(p_{l^{\pm}}) = y(v_0)$


New Physics!

- Collision pair-produces two semi-invisibly decaying particles
- Good place to look for new particles: useful whenever you have a pair produced particle which decays into an invisible and a visible particle.
 (e.g. R-parity conserving SUSY, Drell-Yan production of a new lepton generation)
- It would indeed also be good for fourth generation lepton searches

New Physics!

- Collision pair-produces two semi-invisibly decaying particles
- Good place to look for new particles: useful whenever you have a pair produced particle which decays into an invisible and a visible particle.
 (e.g. R-parity conserving SUSY, Drell-Yan production of a new lepton generation)
- It would indeed also be good for fourth generation lepton searches

New Physics!

- Collision pair-produces two semi-invisibly decaying particles
- Good place to look for new particles: useful whenever you have a pair produced particle which decays into an invisible and a visible particle.
 (e.g. R-parity conserving SUSY, Drell-Yan production of a new lepton generation)
- It would indeed also be good for fourth generation lepton searches

Continued...

Slepton pair production (decays into leptons and *invisible* neutralinos)

$$pp \rightarrow X + \tilde{l}_R^+ \tilde{l}_R^- \rightarrow X + l^+ l^- \tilde{\chi}_1^0 \tilde{\chi}_1^0. \tag{3}$$

 4^{th} Generation Lepton pair production \rightarrow decay to W bosons and neutrinos (Drell-Yan)

$$pp \to X + l_4^+ l_4^- \to X + \bar{\nu}_{l_4} W^+ \nu_{l_4} W^-$$
 (4)

Now, we want an analogue of M_T for these decays...

 M_T^2 assumes unobserved particle is massless. But this is not necessarily true for new physics decays.

Therefore, we consider

$$\tilde{l} \to l\tilde{\chi}$$
 (5)

Which will allow for a more general treatment...

Arbitrary P_t case

For arbitrary P_t , we can write

$$m_{\tilde{l}}^2 = m_l^2 + m_{\tilde{\chi}}^2 + 2(E_{Tl}E_{T\tilde{\chi}}\cosh(\Delta y) - \mathbf{p}_{Tl} \cdot \mathbf{p}_{T\tilde{\chi}})$$
 (6)

where $E_T = \sqrt{\mathbf{p}_T^2 + m^2}$ and Δy is the difference in rapidity, $y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)]$, between the l and $\tilde{\chi}$.

Since $\cosh \Delta y \ge 1$, this simplifies to

$$m_{\tilde{l}}^2 \ge m_T^2(\mathbf{p}_{Tl}, \mathbf{p}_{T\tilde{\chi}}) \equiv m_l^2 + m_{\tilde{\chi}}^2 + 2(E_{Tl}E_{T\tilde{\chi}} - \mathbf{p}_{Tl} \cdot \mathbf{p}_{T\tilde{\chi}}). \tag{7}$$

Where we define a new version of transverse mass as being equal to the sqrt of the right-hand side.

$$m_{\tilde{I}}^2 \ge \max\{m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_{T\tilde{\chi}_a}), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_{T\tilde{\chi}_b})\}$$
 (8)

- However, since we cannot determine how much of the missing E_T is carried by each unobservable particle, we must loop over all possible distributions and take the minimum.
- Thus, we get our new variable,

$$m_{\tilde{l}}^2 \ge M_{T2}^2 \equiv \min_{\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_T} \left[\max\{ m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_1), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_2) \} \right]$$
 (9)

$$m_{\tilde{l}}^2 \ge \max\{m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_{T\tilde{\chi}_a}), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_{T\tilde{\chi}_b})\}$$
 (8)

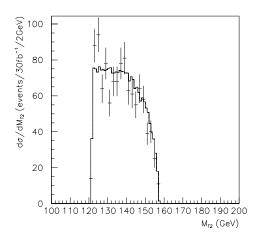
- However, since we cannot determine how much of the missing E_T is carried by each unobservable particle, we must loop over all possible distributions and take the minimum.
- Thus, we get our new variable,

$$m_{\tilde{l}}^2 \ge M_{T2}^2 \equiv \min_{\dot{\mathbf{p}}_1 + \dot{\mathbf{p}}_2 = \dot{\mathbf{p}}_T} \left[\max\{ m_T^2(\mathbf{p}_{Tl^-}, \dot{\mathbf{p}}_1), m_T^2(\mathbf{p}_{Tl^+}, \dot{\mathbf{p}}_2) \} \right]$$
(9)

$$m_{\tilde{l}}^2 \ge \max\{m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_{T\tilde{\chi}_a}), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_{T\tilde{\chi}_b})\}$$
 (8)

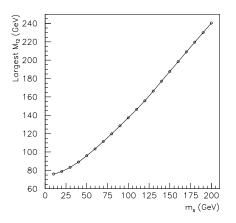
- However, since we cannot determine how much of the missing E_T is carried by each unobservable particle, we must loop over all possible distributions and take the minimum.
- Thus, we get our new variable,

$$m_{\tilde{l}}^2 \ge M_{T2}^2 \equiv \min_{\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_T} \left[\max\{ m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_1), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_2) \} \right]$$
(9)


$$m_{\tilde{l}}^2 \ge \max\{m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_{T\tilde{\chi}_a}), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_{T\tilde{\chi}_b})\}$$
 (8)

- However, since we cannot determine how much of the missing E_T is carried by each unobservable particle, we must loop over all possible distributions and take the minimum.
- Thus, we get our new variable,

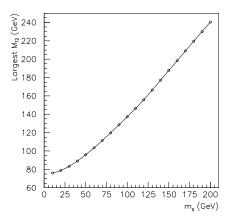
$$m_{\tilde{l}}^2 \ge M_{T2}^2 \equiv \min_{\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_T} \left[\max\{ m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_1), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_2) \} \right]$$
(9)


Some limitations to the model

• M_{T2} distribution for slepton decay in mSUGRA SUSY model. Generated 1105 events (Integrated luminosity = $30fb^{-1}$):

Some limitations to the model

• Variation in M_{T2} upper bound from varying mass of neutralino:



• Actual masses used to generate events: 121,5 *GeV* for neutralino, 157,1 *GeV* for selectron. M_{T2} predicts this well.

Some limitations to the model

• Variation in M_{T2} upper bound from varying mass of neutralino:

• Actual masses used to generate events: 121,5 *GeV* for neutralino, 157,1 *GeV* for selectron. M_{T2} predicts this well.

- New variable M_{T2} used to determine a limit on mass of doubly semi-invisibly decaying particles
- Analogous to transverse mass variable m_T used in W decays
- Works well in MC simulations of SUSY model, good sign for variable's usefulness in future studies
- M_{T2} is often used these days in searches for BSM particles.

- New variable M_{T2} used to determine a limit on mass of doubly semi-invisibly decaying particles
- Analogous to transverse mass variable m_T used in W decays
- Works well in MC simulations of SUSY model, good sign for variable's usefulness in future studies
- M_{T2} is often used these days in searches for BSM particles.

- New variable M_{T2} used to determine a limit on mass of doubly semi-invisibly decaying particles
- Analogous to transverse mass variable m_T used in W decays
- Works well in MC simulations of SUSY model, good sign for variable's usefulness in future studies
- \bullet M_{T2} is often used these days in searches for BSM particles.

- New variable M_{T2} used to determine a limit on mass of doubly semi-invisibly decaying particles
- Analogous to transverse mass variable m_T used in W decays
- Works well in MC simulations of SUSY model, good sign for variable's usefulness in future studies
- M_{T2} is often used these days in searches for BSM particles.

Bibliography

- [1] C. G. Lester and D. J. Summers, "Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders," Phys. Lett. B **463** (1999) 99
- [2] G. Arnison et al., UA1 Collaboration, Phys. Lett. 122B (1983) 103, Phys. Lett. 129B (1983) 273.
- [3] G. Banner et al., UA2 Collaboration, Phys. Lett. 122B (1983) 476.
- [4] www.cern.ch/Committees/LHCC/SUSY96.html
- [5] atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/SUSY/susy.html

Acknowledgements

Figure: Thank you very much!!!

