A direct measurement of the total decay width of the top quark CDF collaboration $\sqrt{s} = 1.96 TeV, 8.7 fb^{-1}$

HASCO 2014

Federico Massa

Gvantsa Mchedlidze

Introduction

Top quark in SM

- Main Decay channel: $t \rightarrow Wb$
- Very suppressed channel: $t \rightarrow Ws$, Wu (*CKM*)
- LO term with $m_b = 0: t \rightarrow Wb$

$$\begin{split} & \text{LO with } \textbf{m}_{b} = \textbf{0} \\ & \Gamma_{t}^{(0)} = \frac{G_{F}m_{t}^{3}}{8\sqrt{2}\pi} \Big[1 - 3\big(\frac{m_{W}^{2}}{m_{t}^{2}}\big)^{2} + 2\big(\frac{m_{W}^{2}}{m_{t}^{2}}\big)^{3} \Big] & \underbrace{\text{t} \quad |\text{Vtb}|_{\text{resons for set of W}}}_{\text{b}} \\ & \text{Including NNLO corrections} \\ & \Gamma_{t} = \Gamma_{t}^{(0)}\big(1 + \delta_{f}^{b} + \delta_{f}^{W} + \delta_{EW} + \delta_{QCD}^{(1)} + \delta_{QCD}^{(2)}\big) \approx 1.33 \; GeV \end{split}$$

Motivation

Why should we measure it?

Experimental accuracy << theoretical

Measurements

D0:

- Model-dependent measurement
- Result: $\Gamma_t = 2.0 \ GeV$ (25% accuracy)

How to perform a model-independent measurement?

• Model-independent measurement

Direct comparison of data with MC top quark mass distributions for different Γ_{top} .

CDF Detector

$t\bar{t} \rightarrow l + jets \ (l = e, \mu)$

HASCO 2014

Event Selection

- Lepton $E_T > 20 \ GeV$
- $|\eta| < 1.1$
- $E_{T_miss} > 20 \ GeV$
- $N_{jet} \geq 4$

Jet Selection

- B tagging, secondary vertex algorithm
- $t\bar{t}$ candidates divided: 0 b-tag, 1 b-tag, ≥ 2 b-tag. Different sig/bkg ratio

• Tight:
$$N_{jet} = 4, E_T > 20 \ GeV, |\eta| < 2.0$$

- Loose: $N_{jet} \ge 3, E_T > 20 \text{ GeV}, |\eta| < 2.0$ $4^{th} \text{ jet}: E_T > 12 \text{ GeV}, |\eta| < 2.4$
- $H_T = E_T^l + E_T^{miss} + \sum E_T^{jet} > 250 \ GeV$

Expacted Backgrounds

- W + jets
- Z + jets
- *Dibosons: WW, WZ, ZZ*
- Single top
- *Multijet* (*data driven techniques*)

Yields are normalized on NLO cross section

Number of events Sig., Bkg., Observed

Candidate l + jets events are divided into 5 categories

TABLE I. Expected and observed numbers of signal and background events assuming a $t\bar{t}$ production cross section $\sigma_{t\bar{t}} = 7.45$ pb and $M_{top} = 172.5 \text{ GeV}/c^2$.

	0-tag	$1\text{-}\mathrm{tagL}$	$1\text{-}\mathrm{tagT}$	2-tagL	2-tagT
W + jets	703 ± 199	170 ± 60	102 ± 37	11.6 ± 4.9	8.4 ± 3.5
Z + jets	52.3 ± 4.4	8.9 ± 1.1	5.9 ± 0.7	0.8 ± 0.1	0.5 ± 0.1
Single top	4.8 ± 0.5	10.5 ± 0.9	6.8 ± 0.6	2.2 ± 0.3	1.7 ± 0.2
Diboson	60.3 ± 5.6	11.1 ± 1.4	8.5 ± 1.1	1.0 ± 0.2	0.8 ± 0.1
Multijets	143 ± 114	34.5 ± 12.6	20.7 ± 16.6	4.4 ± 2.5	2.5 ± 2.4
Background	963 ± 229	235 ± 61	144 ± 41	19.9 ± 5.5	13.8 ± 4.2
$t\bar{t}$ signal	645 ± 86	695 ± 87	867 ± 108	192 ± 30	304 ± 47
Expected	1608 ± 245	930 ± 106	1011 ± 115	212 ± 30	318 ± 47
Observed	1627	882	997	208	275

Final Selection

- Reconstruct top mass, sensitive to Γ_{top} : χ^2 minimization and 4 jets.
- Data is compared with total MC (Sig.+Bkg.) templates, where the signal template is take for different Γ_{top} ([0.1, 30] GeV/c^2)
- Dijet mass, to reconstruct W boson, is calculated <u>independently</u>, inv. mass of two non-b jets.
- JES(main unc.), m_{ii} is used to reconstruct JES in situ
- In data Jet energies are corrected to account energy scale error in calorimeter with σ_c Unc., The SDF JES fractional Uncertainty.

FIG. 1. Distributions for simulated events meeting the lepton + jets selection: (a) m_t^{reco} distributions displayed with three values of Γ_{top} and with the nominal $\Delta_{\text{JES}} = 0.0$; (b) m_{jj} distributions displayed with three values of Δ_{JES} and with $\Gamma_{\text{top}} = 1.5 \text{ GeV}$.

HASCO 2014

Systematic Unsertanties

TABLE II. Summary of systematic uncertainties on $\Gamma_{top}.$

Source	Uncertainty (GeV)
Jet resolution	0.56
Color reconnection	0.69
Event generator	0.50
Higher-order effects	0.21
Residual jet-energy scale	0.19
Parton distribution functions	0.24
<i>b</i> -jet energy scale	0.28
Background shape	0.18
Gluon fusion fraction	0.26
Initial- and final-state radiation	0.17
Lepton energy scale	0.03
Multiple hadron interaction	0.23
Total systematic uncertainty	1.22

Results

FIG. 2. Confidence bands of Γ_{top} as a function of Γ_{meas} for 68% and 95% C.L. limits. Results from simulated experiments assuming 8.7 fb⁻¹ of data at different values of Γ_{top} are convoluted with a smearing function to account for systematic uncertainties. The value observed in data is indicated by an arrow.

Thanks for your attention!