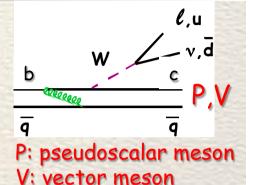


Introduction

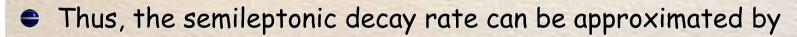
The b quark is the heaviest quark that produces bound states, like the Y resonances (bb), B mesons (bq) and B baryons (bqq', bbq, bbb), q,q'=u,d,s,c
 we focus here on B meson physics


b quarks are produced in pairs
 at e⁺e⁻ colliders → Y (4S): CUSB, CLEO, BABAR, Belle, Belle II
 → 90 GeV (LEP, SLC): ALEPH, DELPHI, L3, OPAL, SLD
 at hadron colliders → Tevatron: CDF, D0
 → LHCb: LHCb, ATLAS, CMS

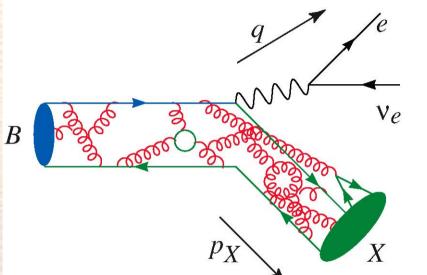
At Y (4S), b quark hadronizes into B⁺ and B⁰_d only with no additional pions
 cross section is 1 nb → need high luminosity get hundreds of 10⁶ B mesons
 excellent laboratory to study B mesons → well-defined initial conditions

At LEP, Tevatron and LHC, b quark hadronizes into B⁺, B⁰_d B⁰_s, and b baryons in fractions of (0.402±0.007):(0.402±0.007):(0.105±0.006):(0.092±0.015)
 cross section increases with √s → at 14 TeV σ≅0.5 b
 initial conditions are not well defined, use p_T (conserved)

General Remarks


- The reason why isospin is a good symmetry in QCD is that $m_d m_u \ll \Lambda_{QCD} \approx 200 \text{ MeV} \approx 1/r$, where r=1 fm
- For heavy quarks it was noticed that there is another symmetry of QCD, $m_Q \gg \Lambda_{QCD}$ (exact symmetry for $m_Q \rightarrow \infty$)

- This symmetry arises because once a quark becomes sufficiently heavy, its mass becomes irrelevant to the non perturbative dynamics of the light degrees-of-freedom (DOF) of QCD → framework to calculate b→c transitions, also the spin of the heavy quark decouples from that of the light DOF
- In the heavy quark limit, an effective theory (HQET) exists that allows exact calculations of the 6 form factors in B→PW and B→VW in terms of a universal function → since m_b is finite, corrections need to be included
- The heavy quark symmetry also justifies the calculation of hadronic decay properties in inclusive decays in terms of the quark decay properties plus an expansion in powers of 1/mb (heavy quark expansion)
 For many quantities the 1/mb term vanishes

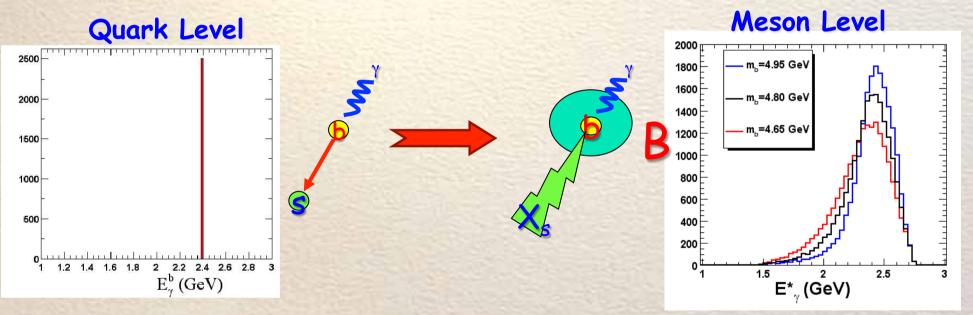

General Remarks II

- As an example, lets look at B inclusive semileptonic decay rate
- The decay is at short distance \rightarrow calculable
- Hadronization occurs at long distance
 is non perturbative
- At leading order, short distance and long distance are cleanly separated and the probability to hadronize is 100%

$$\frac{d\Gamma}{d(LIPS)} \sim \frac{d\Gamma}{d(LIPS)} \text{ (parton model)} + \sum_{n} z_{n} \left(\frac{\Lambda_{QCD}}{m_{b}}\right)^{n} \qquad (1)$$

In this way, decay rate is calculated at ~1% accurated

Most of the time details of b-quark wave function are not relevant, only averages matter (k²)



"Fermi motion"

 $\mathbf{k}^{\mu} \sim \Lambda_{\text{QCD}}$

General Remarks III

- Lets illustrate the effect of the Fermi motion in the decay $B \rightarrow X\gamma$
- The b-quark is confined inside the B meson → the Fermi motion affects the shape of the photon energy spectrum (m_b)

Since the b-quark motion is universal arising from hadronic b-quark interactions inside the B meson, we expect it to determine the dynamics of decays like B→Xγ and B→Xℓv in the same way

AND BE

So for many effects, we need to deal with the motion of the b quark inside the B hadron

General Remarks IV

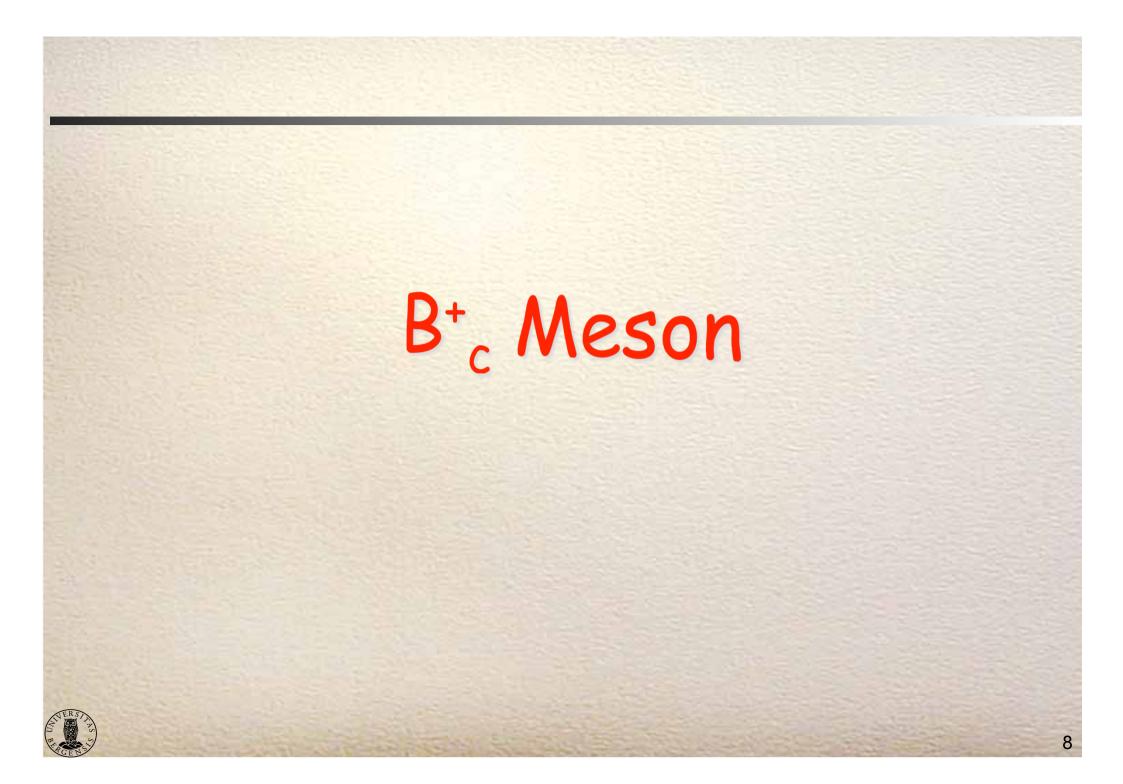
Why is B physics so interesting?

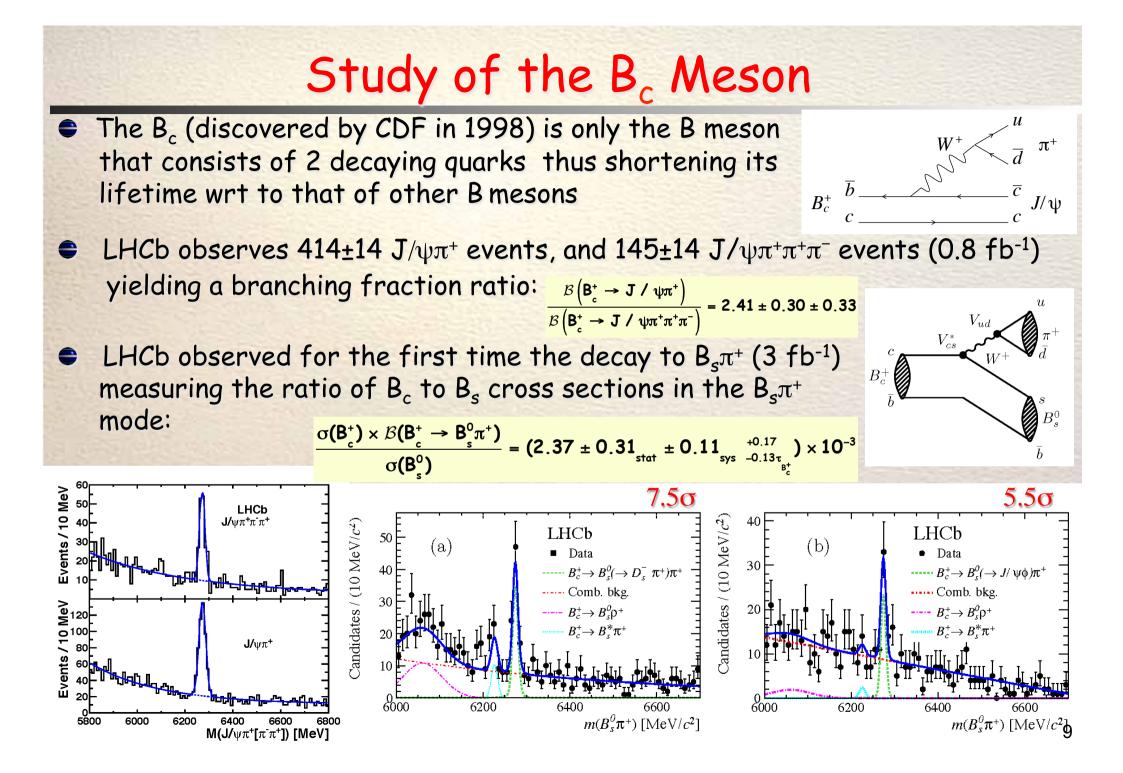
B decays have relatively simple decay topologies and a secondary vertex
 So powerful criteria can be defined to discriminate signal from backgrounds
 Particularly at the Y(4S) with well-defined initial conditions
 dedicated experiments can fully exploit the physics

For most observables predictions in the Standard Model (SM) are rather precise -> deviations would indicate new physics contributions

With high statistics samples, measurements are rather precise to test the SM and check for new physics contributions

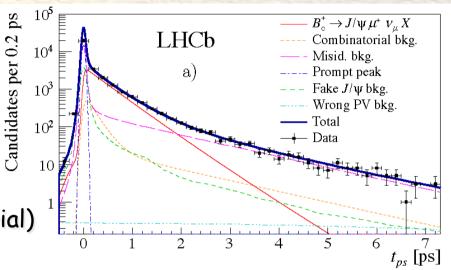
There are many decays and observables that can be measured complete picture which is important for deciding if an effect is real or is a fluctuation

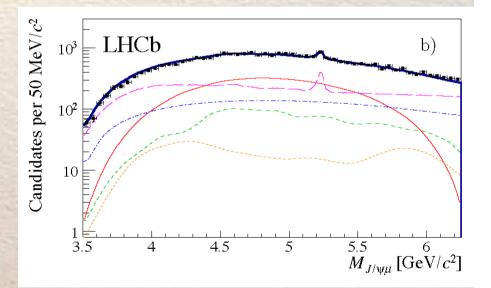



Outline

- Study of B⁺_c Meson
- Rare Decays
 - Β→Χγ
 - $B \rightarrow K\ell^+\ell^-$, $B \rightarrow K^*\ell^+\ell^-$, $B_s \rightarrow \phi \mu^+\mu^-$, and $B \rightarrow X_s\ell^+\ell^-$
 - $B \rightarrow \tau v$
 - $B \rightarrow \mu^+ \mu^-$
- $B \rightarrow D^{(*)} \tau v$
- B⁰B⁰ mixing
- CP violation
 - Direct CP violation
 - Measurement of β
 - Measurement of β_s
 - Measurement of α
 - Measurement of y
 - Unitarity Triangle

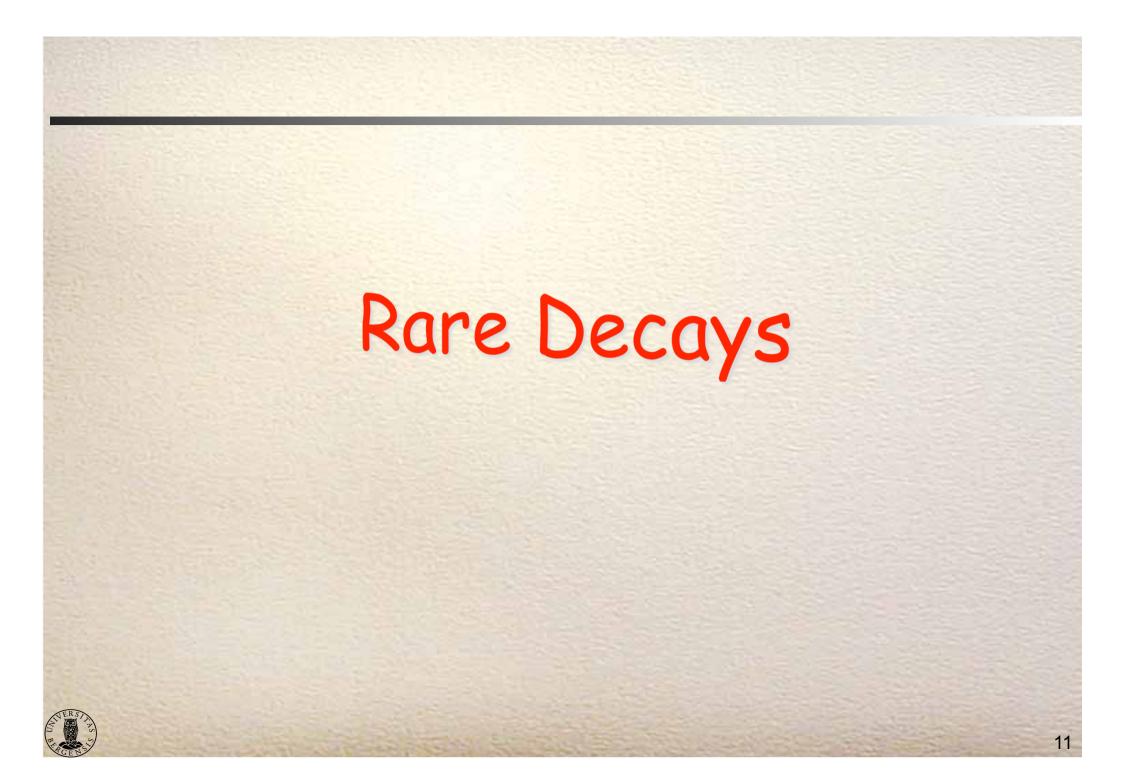
Summary and outlook

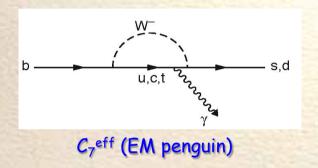


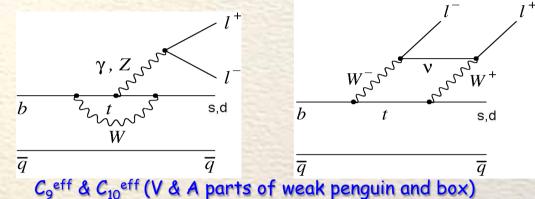


Study of the B_c Meson

- LHCb has also measured the B_c lifetime using a sample 2 fb⁻¹ of $J/\psi X \mu v$ events
- Backgrounds:
 - J/ψ + hadron misidentified as μ
 - false J/ψ + correct μ
 - $J/\psi + \mu$ from primary vertex (prompt)
 - $J/\psi + \mu$ from different vertices (combinatorial)
 - $J/\psi + \mu$ from same vertex ($B \rightarrow 3\mu$)
- The lifetime is extracted from a 2D unbinned maximum likelihood fit to the lifetime and the J/ψμ mass
- Signal t distribution is exponential, $J/\psi\mu$ mass is modeled from simulation
- Observe 8995±103 signal events

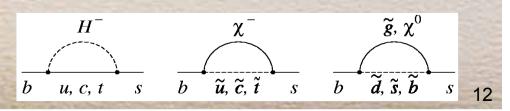

Measure B⁺ lifetime: $\tau_{B^+} = 0.5087 \pm 0.0077$ ps


 \rightarrow compared to τ_{B^0}


 $= 1.516 \pm 0.011$ ps

Rare Decays

• $B \rightarrow X\gamma \& B \rightarrow X\ell^+\ell^-$ are flavor-changing neutral current (FCNC) processes, forbidden in SM at tree level

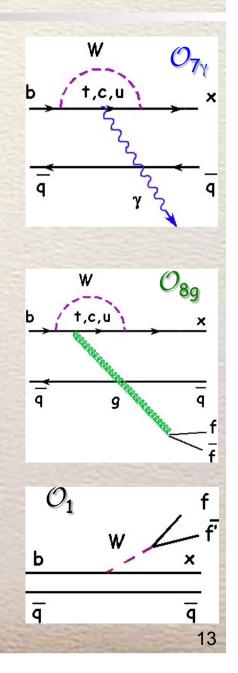


• Effective Hamiltonian factorizes short-distance from long-distance effects $[\mathcal{O}(\alpha_s)]$ $H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_i V_{tb}^* V_{ts,d} C_i(\mu) \mathcal{O}_i \qquad (2)$

→ 4 effective Wilson coefficient: C_7^{eff} , C_8^{eff} , C_9^{eff} , C_{10}^{eff}

- New physics adds new loops with new particles > modifies SM values of Wilson coefficients and may introduce new terms, e.g. C₅ and C_p
- Probe here new physics at a
 scale of a few TeV

$B \rightarrow \overline{X}_{s\gamma}$ Study

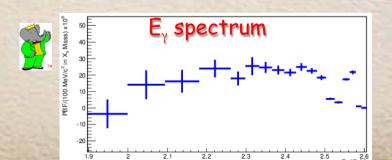

- The B→X_sγ transition is dominated by the magnetic dipole operator O_{7γ} with C₇^{eff}(SM)≈-0.33
 → may be enhanced by new physics contributions
 - In addition, \mathcal{O}_1 and \mathcal{O}_{86} contribute via mixing
- Tt is customary to use the spectator in which $B \rightarrow X_{s\gamma}$ is approximated by the quark decay $b \rightarrow s\gamma$ that is then related to the inclusive semileptonic decay

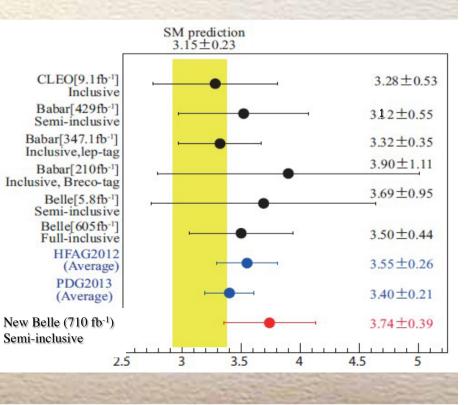
$$\mathcal{B}(\overline{B} \to X_{s}\gamma) = \frac{\Gamma(\overline{B} \to X_{s}\gamma)}{\Gamma(\overline{B} \to X_{c}e\overline{v}_{e})} \mathcal{B}(\overline{B} \to X_{c}e\overline{v}_{e}) \simeq \frac{\Gamma(b \to s\gamma)}{\Gamma(b \to ce\overline{v}_{e})} \mathcal{B}(\overline{B} \to X_{c}e\overline{v}_{e})$$

Here short-distance QCD effects are included

- Normalization to the semileptonic rate removes (m_b)⁵ factor & reduces uncertainties in CKM parameters
- In NNLLO, the SM prediction yields

 $\mathcal{B}(\overline{B} \rightarrow X_{s}\gamma) = (3.15 \pm 0.23) \times 10^{-4}$ $E_{\gamma} > 1.6 \text{ GeV}$


(3)


$\overline{B} \rightarrow X_{s\gamma}$ Results

- = Experimental challenge is to remove γs from π^0 and η decays
- Thus, use 2 approaches
 - fully inclusive method with B tag on opposite side and stringent π^0 and η vetoes
 - sum of exclusive final states, 1 K[±] (K⁰_S) plus 4π ($\leq 1 \pi^0$) $\rightarrow 38$ final states
 - Measured branching fraction (WA)

 $\mathcal{B}(\overline{B} \to X_{s}\gamma) = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$ stat+sys shape b dy
function
agrees well with the SM prediction

• We will see constraints in m_H -tan β plane

≥10°

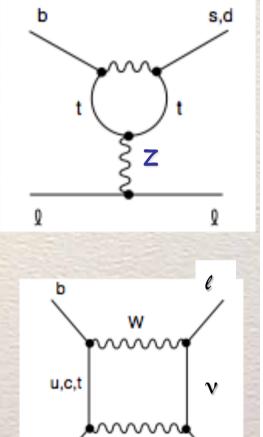
ຊາປ

Events/

10

10

contin expect


L8 2 22 24 26 28 3 E* (GeV) - Simulation

bbar expect

$B \rightarrow K\ell^+\ell^-$ and $B \rightarrow K^*\ell^+\ell^-$ Expectations

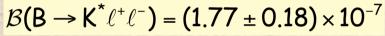
• In addition to the magnetic dipole operator $\mathcal{O}_{7\gamma}$, the weak penguin and box diagrams contribute, where the linear combination of vector currents form \mathcal{O}_9 and that of the axial-vector currents form \mathcal{O}_{10}

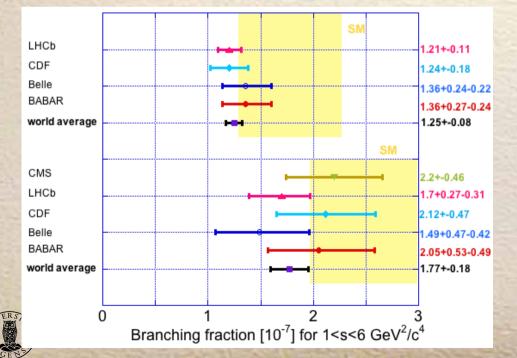
So we encounter 2 new Wilson coefficients C₉^{eff}(q²) and C₁₀^{eff}
 C₉^{eff}(q²)-Y(q²)=4.211, C₁₀^{eff}=-4.103,
 Y(q²) increases faster than exponential for q²< 5.76 for q²>5.76 decreases ~ exponentially

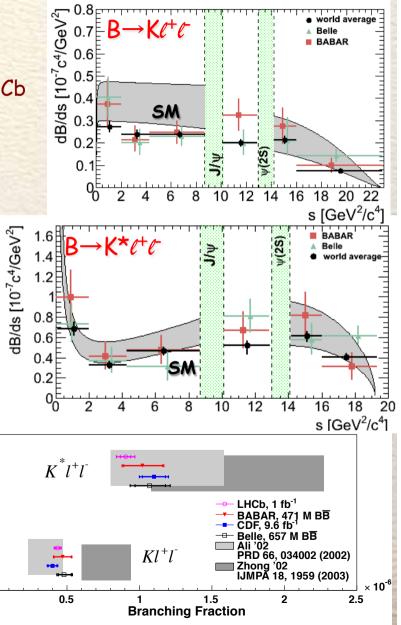
15

The decay rate is again normalized to the semileptonic rate

Predictions for 1<q²<6 GeV² and for q²> 14.2 GeV² have smallest uncertainties


• SM prediction (for $1 < q^2 < 6 \text{ GeV}^2$) $\mathcal{B}(B \rightarrow K^* \ell^+ \ell^-) = (2.60^{+1.82}_{-1.34}) \times 10^{-7}$


 $\mathcal{B}(\mathsf{B}^{0} \to \mathsf{K}^{0}_{s}\ell^{+}\ell^{-}) = \left(1.59^{+0.59}_{-0.35}\right) \times 10^{-7} \qquad \mathcal{B}(\mathsf{B}^{+} \to \mathsf{K}^{+}\ell^{+}\ell^{-}) = \left(1.75^{+0.64}_{-0.38}\right) \times 10^{-7}$

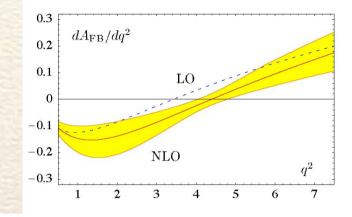

$B \rightarrow K\ell^+\ell^-$ and $B \rightarrow K^*\ell^+\ell^-$ Branching Fractions

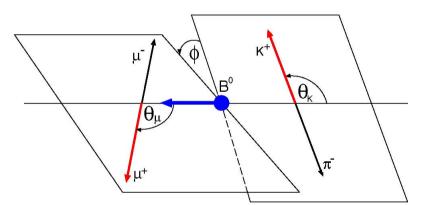
Λ

- BABAR, Belle, CDF, LHCb and CMS measured differential branching fractions of B→Kℓ⁺ℓ⁻
 & B→K^{*}ℓ⁺ℓ⁻ decays WA is dominated by LHCb
- Branching fractions for 1<s<6 GeV² $\mathcal{B}(B \rightarrow K\ell^+\ell^-) = (1.25 \pm 0.08) \times 10^{-7}$

$B \rightarrow K\ell^+\ell^-$ and $B \rightarrow K^*\ell^+\ell^-$ Angular Analysis

- From angular distributions we can measure the forward-backward asymmetry A_{FB} (*l*⁺ is in same -opposite hemisphere of the B meson) and the K* longitudinal polarization F_L
 - 3 angles determine the decay rate: • θ_1 : angle between ℓ^+ & B momenta in the $\ell^+\ell^-$ CM frame

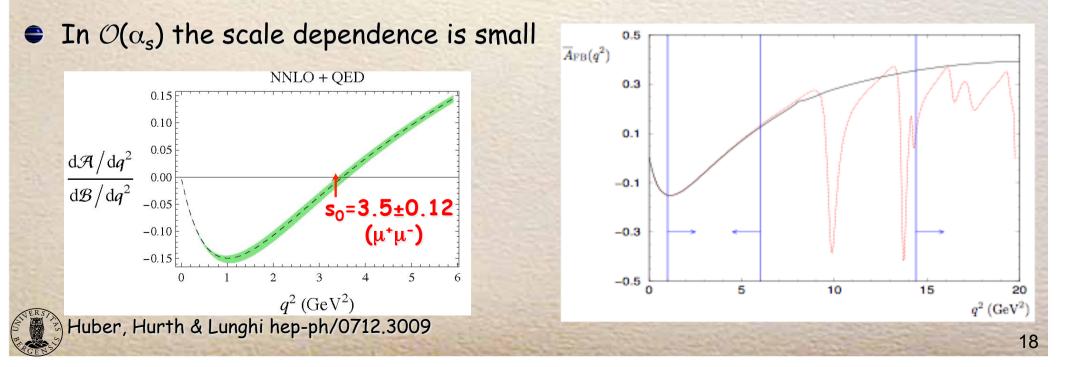

•

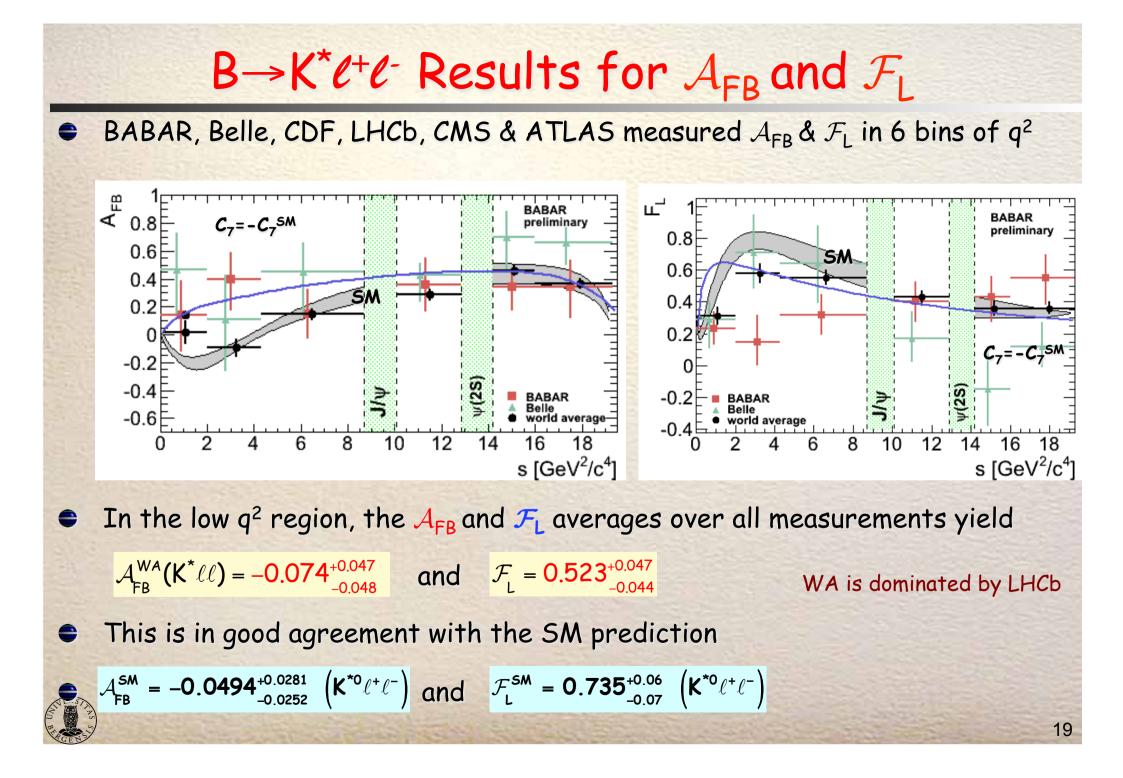

- θ_K: angle between K & B momenta in K* rest frame
- \$\phi: angle between 2 decay planes

We extract parameters from the 1-dimensional angular distributions

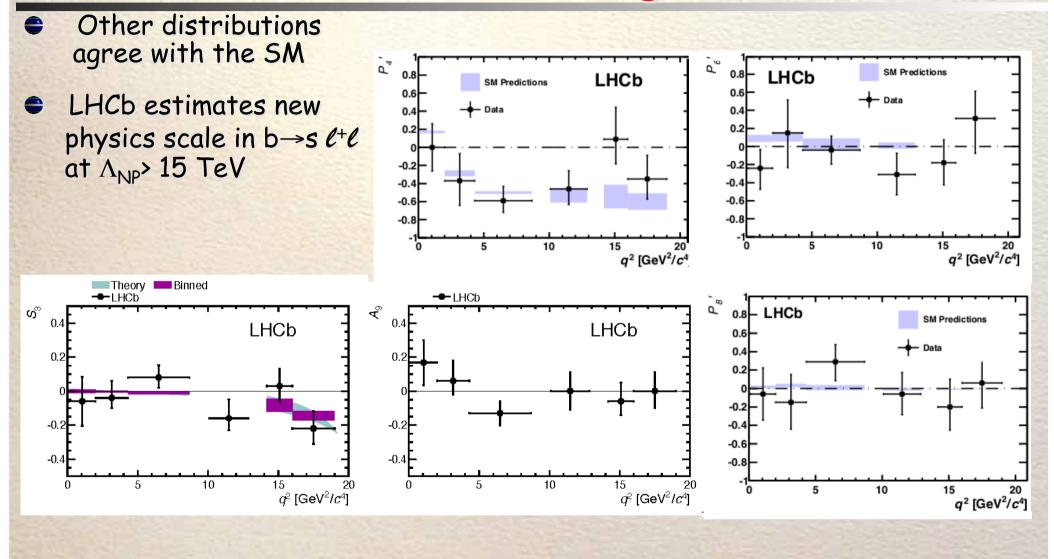
 $W(\cos\theta_{k}) = \frac{3}{2}\mathcal{F}_{L}\cos^{2}\theta_{k} + \frac{3}{4}(1 - \mathcal{F}_{L})\sin^{2}\theta_{k}$ (4)

$$W(\cos\theta_{\ell}) = \frac{3}{4} \mathcal{F}_{L} \sin^{2}\theta_{\ell} + \frac{3}{8} (1 - \mathcal{F}_{L})(1 + \cos^{2}\theta_{\ell}) + \mathcal{A}_{FB} \cos\theta_{\ell}$$
(5)


17

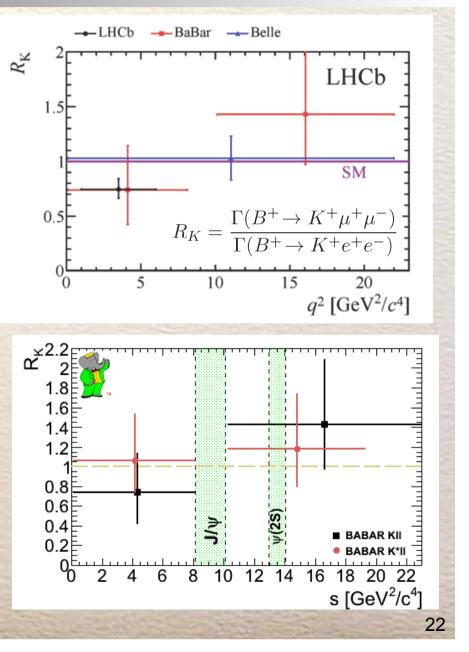

$B \rightarrow K^* \ell^+ \ell^-$ Forward-backward Asymmetry

In O(1) the lepton forward-backward asymmetry is


$$\frac{d\mathcal{A}_{FB}(q^{2})}{ds} \propto -\left\{ Re\left[C_{9}^{eff}(q^{2})C_{10} \right] V(q^{2})A_{1}(q^{2}) + \frac{m_{b}m_{B}}{q^{2}} Re\left[C_{7}^{eff}C_{10} \right] \left[V(q^{2})T_{2}(q^{2}) \left(1 - \frac{m_{\kappa^{*}}}{m_{B}} \right) + A_{1}(q^{2})T_{1}(q^{2}) \left(1 + \frac{m_{\kappa^{*}}}{m_{B}} \right) \right] \right\}$$

A_{FB} has a zero crossing that provides a powerful signature for searching for new physics effects (6) $V(q^2), A_1(q^2), T_1(q^2), T_2(q^2)$ are form factors that increase with q^2 in a monopole or dipole form and are positive

Measurement of $B \rightarrow K^* \ell^+ \ell^-$ Angular Observables

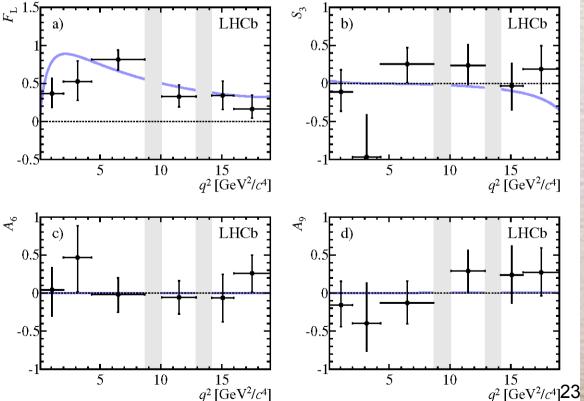

$B \rightarrow K\ell^+\ell^-$ and $B \rightarrow K^*\ell^+\ell^-$ Lepton Flavor Ratio

• Since $B \rightarrow K^{(*)}e^+e^-$ and $B \rightarrow K^{(*)}\mu^+\mu^-$ may receive different contributions from new physics, it is interesting to look at the lepton flavor ratios

$$\mathcal{R}_{K^{(*)}} \equiv \frac{\mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)}e^{+}e^{-})} \qquad \mathsf{q}^{2} \ge (2^{*}\mathsf{m}_{\mu})^{2}$$

 \clubsuit LHCb has measured R_K below the J/ψ resonance

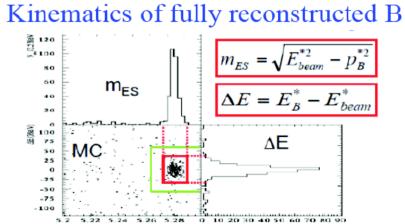
- \clubsuit BABAR measured both R_{K} and $\mathsf{R}_{\mathsf{K}^*}$ below and above the J/ψ resonance
- BABAR R_{K(*)} results are consistent and agree with the SM prediction
 - The LHCb $R_{\rm K}$ result is consistent with the SM within 2σ



$B_s \rightarrow \phi \mu^+ \mu^- Study$

- Replacing the spectator d quark with and s quark yields $B_s \rightarrow \phi \mu^+ \mu^-$
- LHCb has observed $B_s \rightarrow \phi \mu^+ \mu^-$ measuring differential branching fractions and angular observables in 6 bins of q^2
- All results agree with the SM prediction
- The total branching fraction is

$$\mathcal{B}\left(\mathsf{B}_{s}^{} \rightarrow \phi\mu^{+}\mu^{-}\right) = \left(7.07^{+0.64}_{-0.56} \pm 0.17 \pm 0.71\right) \times 10^{-7}$$



$B \rightarrow X_{s} \ell^{+} \ell^{-}$

- Reconstruct 20 exclusive final states with K (K⁰_S→π⁺π⁻), ≤2π[±] & B⁰ → K⁰_Sμ⁺μ⁻
 ≤1π⁰(→γγ) for branching fraction and 14 self-tagging modes (red B⁺ → K⁺μ⁺μ⁻
 for CP asymmetry measurements
 No
 is signal
- The 20 exclusive modes represents 70% of the inclusive rate with $m_{Xs} < 1.8 \text{ GeV}$ accounting for K^0_L modes, $K^0_S \rightarrow \pi^0 \pi^0$ and π^0 Dalitz decays
- Extrapolate for the missing modes and those with m_{Xs} > 1.8 GeV using JETSET fragmentation and theory predictions
- Kinematic constraints
 m_{ES}>5.225 GeV
 -0.1 <ΔE<0.05 for X_s ee
 -0.05<ΔE<0.05 for X_s μμ

Use no tag for B

tag

Β

decay

Кπ

Κππ Κπππ

etc.

В

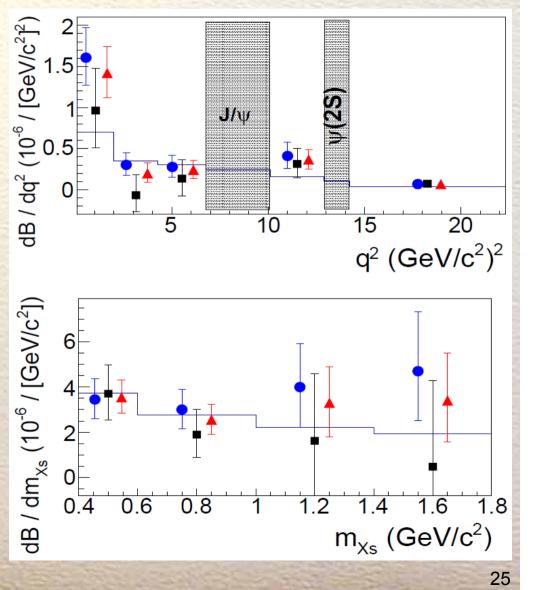
 $B^+ \rightarrow K^+ e^+ e^ B^{0} \rightarrow K^{*0}(K^{0}_{\varsigma}\pi^{0})\mu^{+}\mu^{-}$ $B^+ \rightarrow K^{\star}(K^+\pi^0)\mu^+\mu^ B^{\scriptscriptstyle +} \to K^{\ast_{\scriptscriptstyle +}}(K^{\scriptscriptstyle 0}_{\varsigma}\pi^{\scriptscriptstyle +})\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ $B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})\mu^{+}\mu^{-}$ $B^{0} \rightarrow K^{*0}(K^{0}_{c}\pi^{0})e^{+}e^{-}$ $B^{+} \rightarrow K^{*+}(K^{+}\pi^{0})e^{+}e^{-}$ $B^{+} \rightarrow K^{*+} (K^{0}_{s} \pi^{+}) e^{+} e^{-}$ $B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})e^{+}e^{-}$ $B^{0} \rightarrow K^{0}_{c}\pi^{+}\pi^{0}\mu^{+}\mu^{-}$ $B^+ \to K^+ \pi^- \pi^0 \mu^+ \mu^ B^+ \to K^0_{c} \pi^+ \pi^- \mu^+ \mu^ B^{0} \rightarrow K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$ $B^{0} \rightarrow K^{0}_{s}\pi^{+}\pi^{0}e^{+}e^{-}$ $B^+ \rightarrow K^+ \pi^+ \pi^0 e^+ e^ B^+ \rightarrow K^0_{s} \pi^+ \pi^- e^+ e^ B^{0} \rightarrow K^{+}\pi^{+}\pi^{-}e^{+}e^{-}$

 $B \rightarrow X_{s} \ell^{+} \ell^{-}$

For $1 < q^2 < 6 \text{ GeV}^2$ BABAR measures

 $\mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}) = (0.66^{+0.82+0.30}_{-0.76-0.24} \pm 0.07) \times 10^{-6}$ $\mathcal{B}(B \to X_{s}e^{+}e^{-}) = (1.93^{+0.47+0.21}_{-0.45-0.16} \pm 0.18) \times 10^{-6}$ $\mathcal{B}(B \to X_{s}\ell^{+}\ell^{-}) = (1.60^{+0.41+0.17}_{-0.39-0.13} \pm 0.18) \times 10^{-6}$ Phys.Rev.Lett. 112, 211802 (2014)

Agrees well with the SM prediction


 $\mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}) = (1.59 \pm 0.11) \times 10^{-6}$ $\mathcal{B}(B \to X_{s}e^{+}e^{-}) = (1.64 \pm 0.11) \times 10^{-6}$

• For q²>14.2 GeV² BABAR measures

$$\mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}) = (0.60_{-0.29-0.04}^{+0.31+0.05} \pm 0.00) \times 10^{-6}$$

$$\mathcal{B}(B \to X_{s}e^{+}e^{-}) = (0.56_{-0.18-0.03}^{+0.19+0.03} \pm 0.00) \times 10^{-6}$$

$$\mathcal{B}(B \to X_{s}\ell^{+}\ell^{-}) = (0.57_{-0.15-0.02}^{+0.16+0.03} \pm 0.00) \times 10^{-6}$$
• Consistent with SM prediction at ~10

Leptonic Decays

 $\left< \mathbf{O} \right| \mathbf{J}_{\mu}^{\mathbf{V}-\mathbf{A}} \left| \mathbf{B} \right>$

В

- Pure leptonic decays are mediated by W annihilation
- The relevant ME here is

In th

are p

The vector current vanishes while the axial vector currents yields

$$\left< 0 \left| \overline{\mathbf{u}} \gamma_{\mu} \gamma_{5} \mathbf{b} \right| \mathbf{B} \right> = \mathbf{i} \mathbf{f}_{B} \mathbf{p}_{\mu}^{B}$$
 (9)

 f_B : B decay constant p_B : B momentum

W

e,μ,τ

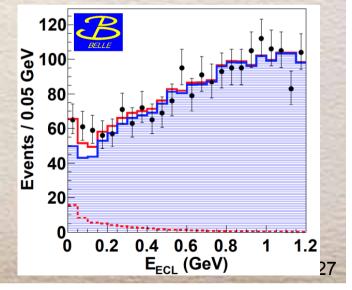
 $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

(8)

With this relation of the hadronic ME to the decay constant we can express the branching fraction by

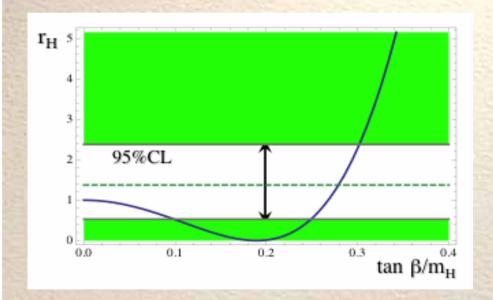
Measurement of $B^+ \rightarrow \tau^+ \nu$

New Physics may enhance the branching fraction by a factor of

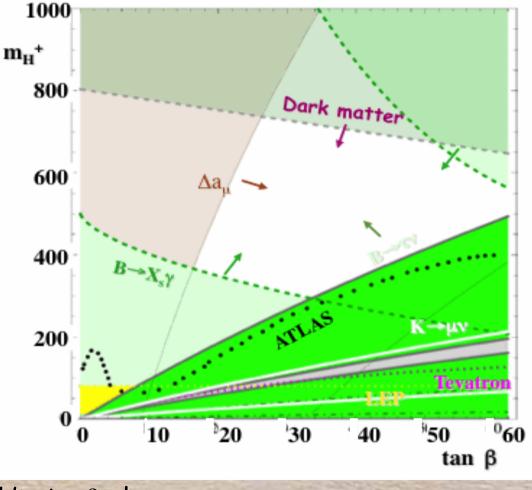

$$\mathbf{r}_{H} = \left(1 - \frac{\mathbf{m}_{B}^{2}}{\mathbf{m}_{H}^{2}} \frac{\tan^{2}\beta}{1 + 0.01 \times \tan\beta}\right)^{2}$$
(11)

m_H: charged Higgs mass tan β: ratio of vacuum expectation values for the 2 higgs doublets

- BABAR and Belle have observed $B^+ \rightarrow \tau^+ v$ and measured its branching fraction
- With reconstructing the other B meson fully in an exclusive final state, no additional particles should appear in the decay besides the τ decay products
- So BABAR and Belle examine the extra energy measured in the calorimeter
- BABAR observes 89±44 signal events
- Belle sees 62⁺²³-22 events
- The branching fractions measurements yield


 $\mathcal{B}(B \to \tau v) = (1.76 \pm 0.49) \times 10^{-4}$

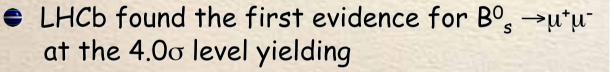
 $\mathcal{B}(B \rightarrow \tau v) = (0.72^{+0.27+0.11}_{-0.25-0.11}) \times 10^{-4}$


Implications of $B^+ \rightarrow \tau^+ \nu$ Measurements

- $B^+ \rightarrow \tau^+ v$ is a useful probe to search for new physics contributions
- Extra contributions may arise from a charged Higgs boson increasing $\mathcal{B}(B^+ \rightarrow \tau^+ \nu)_{SM}$ by r_H

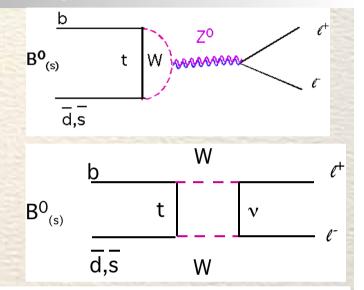
• Using the present WA of $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.15 \pm 0.23) \times 10^{-4}$, we can set a limit on the H[±] mass vs tan β

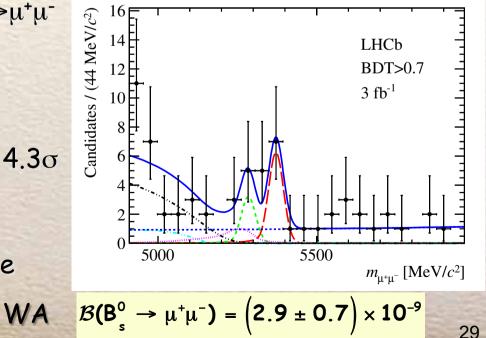
 $\mathcal{B}(B^+ \rightarrow \tau^+ \nu)$ plus other measurements impose stringent constraints on the H[±] -tan β plane



Study of $B \rightarrow \mu^+ \mu^-$ Decays

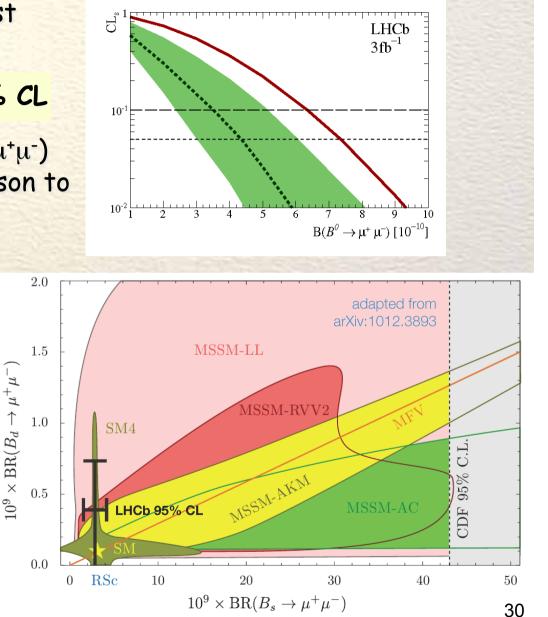
- The B_d^0 and B_s^0 mesons can also decay to $\mu^+\mu^-$, which proceeds via a weak penguin or box diagram
- In the Standard Model, the branching fractions are predicted to be


 $B(B_s^0 \rightarrow \mu^+ \mu^-) = (3.25 \pm 0.17) \times 10^{-9}$


 $B(B_d^0 \rightarrow \mu^+ \mu^-) = (0.107 \pm 0.010) \times 10^{-9}$

 $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-) = \left(2.9^{+1.1}_{-1.0}(\text{stat})^{+0.3}_{-0.1}(\text{sys})\right) \times 10^{-9}$

- CMS has confirmed the LHCb result at 4.3 σ $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.0^{+0.9}_{-0.8}(\text{stat})^{+0.6}_{-0.4}(\text{sys})) \times 10^{-9}$
 - The measured branching fractions agree well with the SM prediction



Implications of $B \rightarrow \mu^+ \mu^-$ Measurements

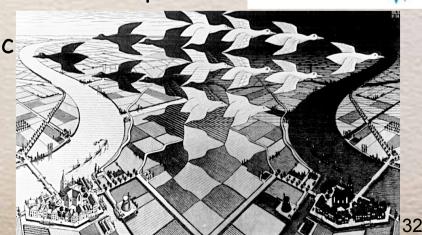
For B⁰_d, LHCb has derived the lowest branching fraction upper limit

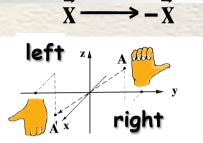
 $\mathcal{B}(B^0_d \rightarrow \mu^+ \mu^-) < 7.4 \times 10^{-10}$ @ 95% CL

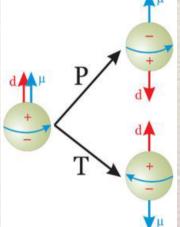
- The LHCb $\mathcal{B}(B^{0}_{s} \rightarrow \mu^{+}\mu^{-})$ and $\mathcal{B}(B^{0}_{d} \rightarrow \mu^{+}\mu^{-})$ measurements are shown in comparison to predictions of
 - The Standard Model
 - Minimum Flavor Violation Model
 - 4 SUSY models
 - → Only left-handed currents (LL)
 - → Agashe and Carone (AC)
 - ➔ Ross, Velasco-Sevilla, Vives (RVV2)
 - Antusch, King, Malinsky (AKM)
- The B(B⁰_s →µ⁺µ⁻) measurements place strong constraints on the parameter space of New Physics
 Models

CP Violation in

the B System


CP Violation


←→ right-handed state


←→ backward moving time

←→ antiparticle

- Particle physics use many internal symmetries, e.g. C, P, T
- P: parity transforms: left-handed state
- C: C-parity transforms particle
- T: time reversal transforms: forward moving time
- CP: transforms: left-handed particle particle ←→ right-handed antiparticle
- CP is conserved in strong and electromagnetic interactions
- CP is violated in weak processes

CP Violation in the B System

- States produced in strong and electromagnetic interactions are the flavor eigenstates, e.g. |B⁰> & |B⁰>
- However, they decay weakly as |B⁰_H> and |B⁰_L> that can be expressed as linear combinations of the flavor eigenstates:

$$\begin{vmatrix} B_{L}^{0} \rangle = p \begin{vmatrix} B_{d}^{0} \rangle + q \begin{vmatrix} \overline{B}_{d}^{0} \rangle \\ B_{H}^{0} \rangle = p \begin{vmatrix} B_{d}^{0} \rangle - q \begin{vmatrix} \overline{B}_{d}^{0} \rangle \end{vmatrix} \quad \text{with} \quad \begin{vmatrix} q \end{vmatrix}^{2} + \left| p \right|^{2} = 1$$
(22)

- Since individual decay channels have small branching fractions $\mathcal{O}(10^{-3})$ that contribute with alternating signs, both states have the same lifetime: $\Gamma_H = \Gamma_L = \Gamma$
- B⁰_H is the heavier state, |B⁰_L is the lighter state
- Their mass difference $\Delta M = M_H M_L$ represents the $B_d^0 B_d^0$ oscillation frequency
- The ratio q/p represents a phase factor for the mixing; in the SM |q/p|=1

The 2-particle system is described by a Schrödinger equation with mass matrix M and decay matrix Γ

B Decay Rate and λ

- We want to look at decays of |B⁰> & |B⁰> into CP eigenstates f_{CP} as a function of time
- Thus, we define the amplitudes $A(t) = \langle f_{CP} | H | B^{\circ}(t) \rangle$ and $\overline{A}(t) = \langle f_{CP} | H | \overline{B}^{\circ}(t) \rangle$
- The figure of merit for CP violation is where η denotes the CP eigenvalue of the CP eigenstate

$$\lambda = \eta \frac{q}{p} \frac{\overline{A}}{A}$$
(24)

(23)

(25)

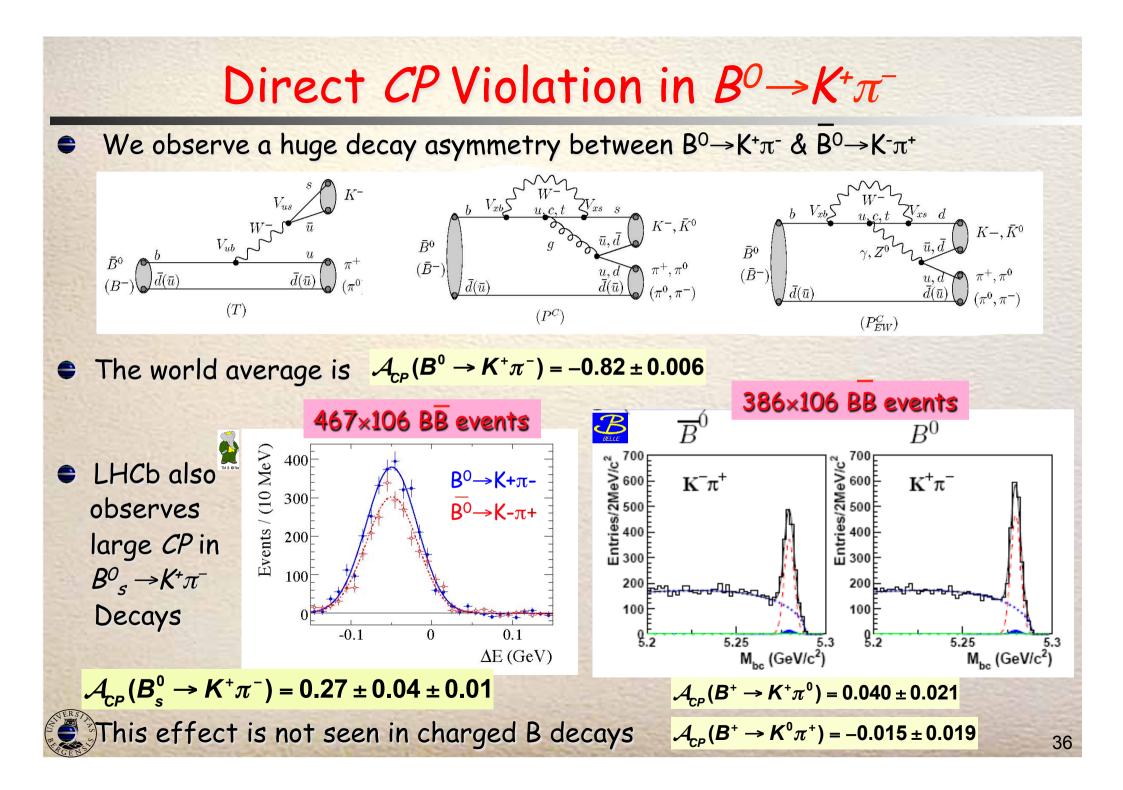
The time-dependent decay rates are

$$\Gamma\left(\begin{array}{c} \boldsymbol{B}_{phys}^{0}(t)\\ \boldsymbol{\bar{B}}_{phys}^{0}(t)\end{array}\right) \rightarrow \boldsymbol{f}_{C^{p}} = \left|\boldsymbol{A}\right|^{2} \exp\left\{-\Gamma t\right\} \times \left[\frac{1+\left|\boldsymbol{\lambda}\right|^{2}}{2} + \frac{1-\left|\boldsymbol{\lambda}\right|^{2}}{2} \cos(\Delta M t) - \frac{\Im m \lambda}{2} \sin(\Delta M t)\right]$$

We define the time-dependent CP asymmetry

$$\mathcal{A}_{f_{CP}}(t) = \frac{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) - \Gamma\left(B_{phys}^{0}(t) \rightarrow f_{CP}\right)}{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) + \Gamma\left(B_{phys}^{0}(t) \rightarrow f_{CP}\right)}$$
(26)
34

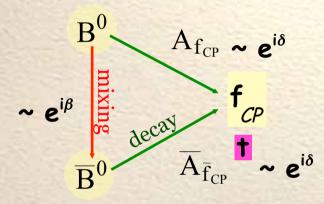
Time-dependent CP Asymmetry


For the B⁰ B⁰ system, we obtain

$$\mathcal{A}_{f_{CP}}(t) = \frac{-\left(1 - \left|\lambda\right|^{2}\right)\cos\left(\Delta M t\right) + 2\Im m\lambda\sin\left(\Delta M t\right)}{\left(1 + \left|\lambda\right|^{2}\right)}$$
(27)

- The first term represents direct CP violation; the second term results from the interference of decays with and without B⁰ B⁰ mixing
- If in addition, $|\overline{A}/A|=1 \rightarrow |\lambda|=1$ and the CP asymmetry reduces to $\mathcal{A}_{f_{t}}(t) = +\Im m\lambda \sin(\Delta M t)$
- Note that λ is directly related to CKM matrix elements
- At the $\Upsilon(4S)$, a $B^0\overline{B^0}$ pair is produced that is entangled until one B decays → however, the equations (27) and (28) still hold if t is replaced with $t_{fCP}-t_{tag}$ where t_{fCP} is the decay time of one B meson into the CP eigenstate and t_{tag} is the decay time of the other B into a state that identifies the B flavor

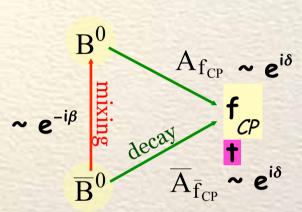
Since B mesons produced at the $\Upsilon(4S)$ are nearly at rest ($p_B \approx 340$ MeV), the $\Upsilon(4S)$ system needs to be boosted \rightarrow at PEP II boost is $\beta\gamma=0.56$


(28)

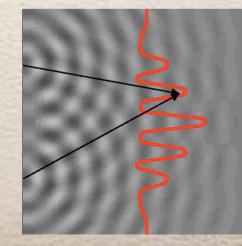
CP Violation caused by Interference of Decays with and without B⁰B⁰ Mixing

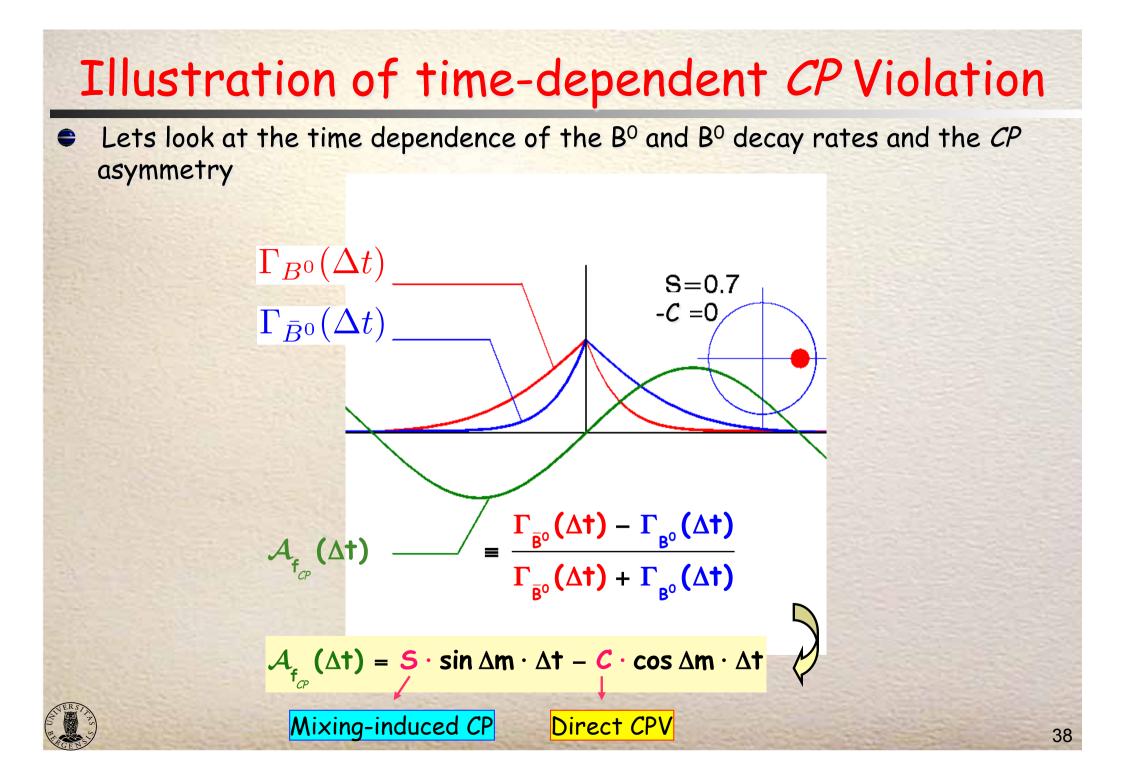
Process

t = 0


Decay rate

CP Violation is caused by the interference between mixing & decay


 Typically, we need to measure the time dependence of the CP asymmetry as the time-integrated asymmetry vanishes

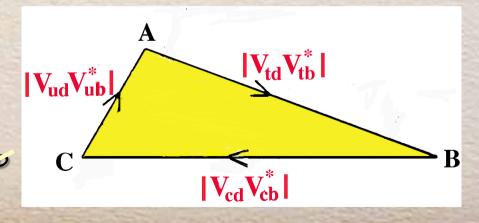

CP conjugated process

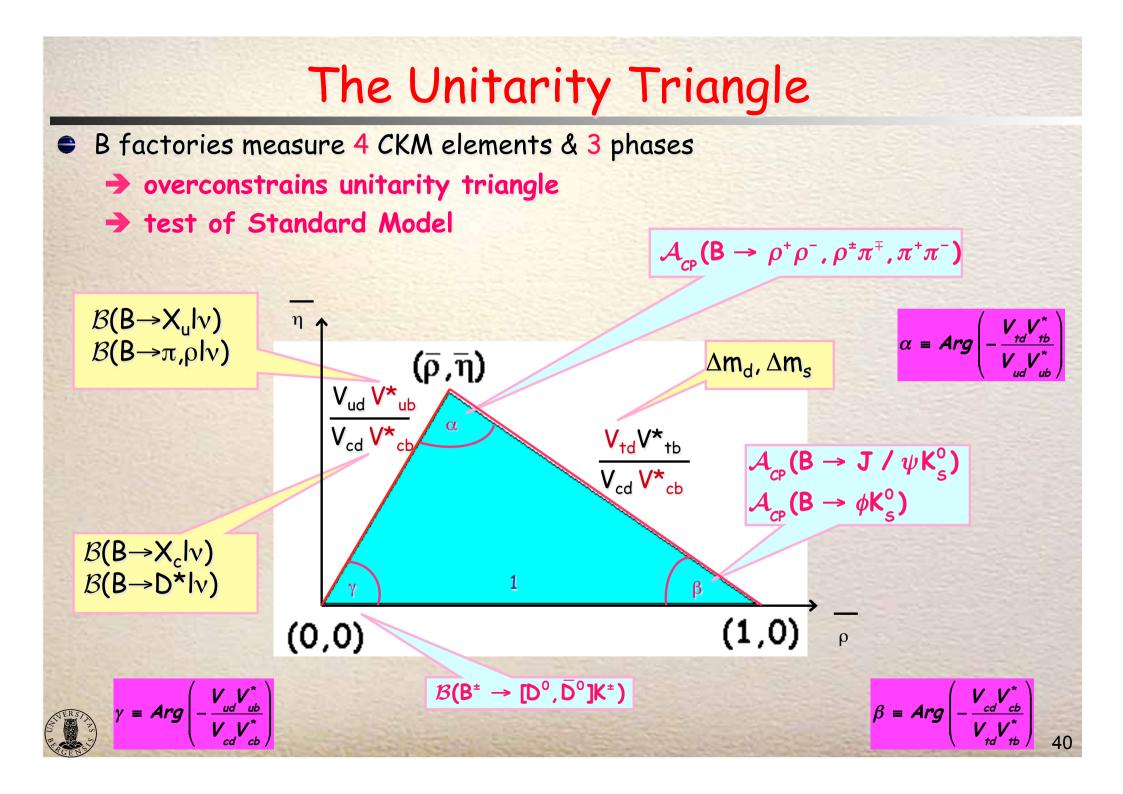
† = 0

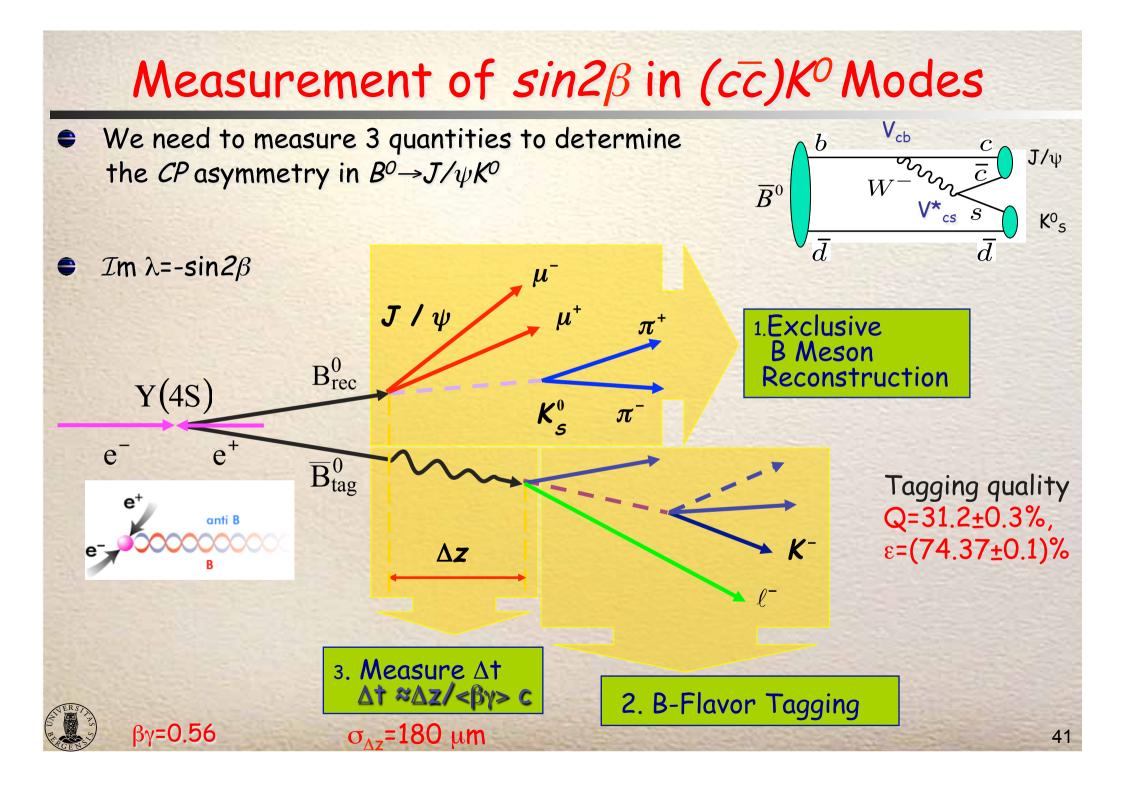
CP-conjugated decay rate

Unitarity Conditions of the CKM Matrix

- In the Standard Model, the CKM matrix produces CP violation
- The unitarity conditions of the CKM matrix yields 6 triangular relations
- Physics-wise most interesting is the relation

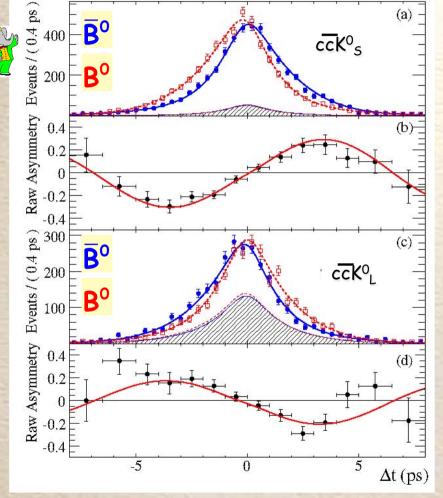

$$V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*}=0$$
(29)
$$\uparrow \qquad \uparrow \qquad \uparrow$$

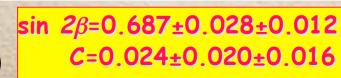

$$1 \quad -\sin\theta_{c} \quad 1$$

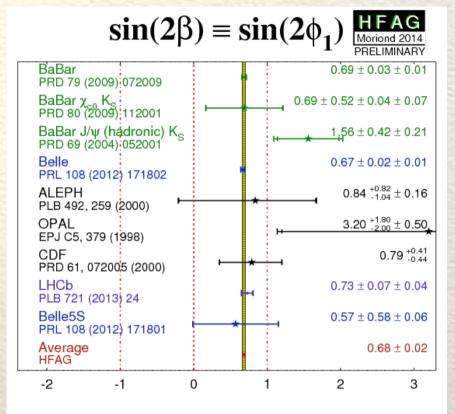

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

The graphical representation of this relation yields the so-called Unitarity Triangle

All 6 triangles have the same area
A ≤ J = Sm(V_{ij}V_{kl}V*_{il}V*_{kj}) ≠ 0
for any i≠k and j≠l
(Jarlskog determinant)
J=(3.01±0.19)×10⁻⁵







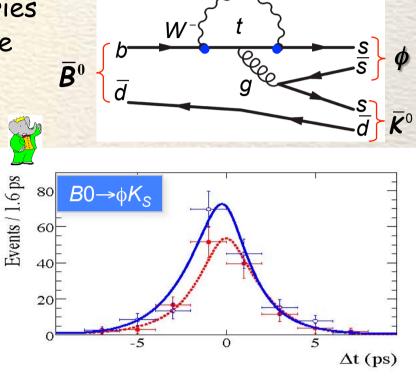
 $sin 2\beta$ Measurements

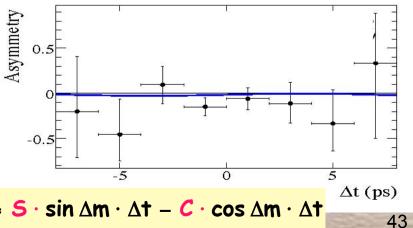
15481 tagged events (465 M BB)

• $\sin 2\beta$ world average is 0.68±0.02 • β =(21.5^{+0.8}-0.7)°

Cosine term is consistent with zero 0.005±0.017

Measurement of $\sin 2\beta$ in $B \rightarrow \phi K^0$


- In the Standard Model, CP violating asymmetries from $B \rightarrow J/\psi K^0 \& B \rightarrow \phi K^0$ modes yield the same value of "sin 2β "
- Using 465×10^6 (383×10^6) BB events, BABAR observed $381 \pm 23 \phi K^0_{5}$ & ($151 \pm 22 \phi K^0_{L}$ events)
- Using 535×10^6 BB events, Belle observed $307 \pm 21 \phi K_{5}^{0}$ & $114 \pm 17 \phi K_{L}^{0}$ events
- The CP asymmetry measurements from BABAR & Belle yield:

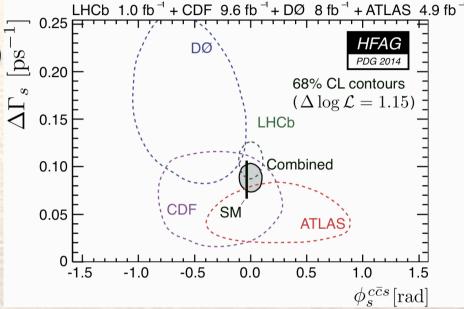

 $S_{\phi K^0} = +0.74^{+0.11}_{-0.13}$ $C_{\phi K^0} = 0.01 \pm 0.14$

= +0.59 ± 0.07

- This agrees well with the SM prediction
 - Another related mode is $B \rightarrow \eta' K^0$ yielding

 $C_{n'K^0} = -0.05 \pm 0.05 \quad \mathcal{A}_{f_n}(\Delta t) = 5 \cdot \sin \Delta m \cdot \Delta t - C \cdot \cos \Delta m \cdot \Delta t$

Comparison of sin2 β in Penguin-Dominated Modes


- For the penguin-dominated rare hadronic decays BABAR and Belle yield consistent results
- For most penguin-dominated rare hadronic decays, the measured value of $\sin 2\beta^{eff}$ agrees with the $\sin 2\beta$ world average obtained from $B \rightarrow cc K^0$ modes

		22	- 66	
	sin()	$(\beta^{\text{eff}}) \equiv si$	$n(2\phi_{1}^{eII})$	HFAG
	5111(2	p = s	μ(μψη)	Moriond 2014
			œj _e	PRELIMINARY
b→ccs	World Average	9		0.68 ± 0.02
Ŷ	BaBar		0.6	$6 \pm 0.17 \pm 0.07$
- -	Belle			0.90 +0.09 +8:19 0.74 -0.13
	Average BaBar		·····	$0.74_{-0.13}$ $57\pm0.08\pm0.02$
° 1, K	Belle			$8 \pm 0.07 \pm 0.03$
ہ ⊐´	Average			0.63 ± 0.06
······································	BaBar			0.94 +0.21 ± 0.06
×° s	Belle	****	0.3	$30 \pm 0.32 \pm 0.08$
ω.	Average			0.72 ± 0.19
l ∽ ×	BaBar			$5 \pm 0.20 \pm 0.03$
ہ ج	Belle	•	0.6	67 ± 0.31 ± 0.08
<u>ه</u>	Average BaBar		0.35 +0.	$\begin{array}{c} 0.57 \pm 0.17 \\ \begin{array}{c} 26 \\ 31 \end{array} \\ \begin{array}{c} 0.06 \pm 0.03 \end{array}$
<u> </u>	Belle			$^{31}_{25} \pm 0.09 \pm 0.10$
ے م	Average			0.54 +0.18
	BaBar	·····		0.55 +0.26 ± 0.02
×°	Belle		4 7 0 .9	1 ± 0.32 ± 0.05
8	Average			0.71 ± 0.21
×°	BaBar			0.74 +0.12
<u> </u>	Belle			0.63 +0:16 -0.69 +0:10 0.69 +0:12
····· · · · · · · · · · · · · · · · ·	Average BaBar		1048 + D F	$0.09_{-0.12}$ $2\pm0.06\pm0.10$
× ×	Average		2 0.0	0.48 ± 0.53
	BaBar		S 10.20 ± 0.5	2 ± 0.07 ± 0.07
×° ×	Average	ă <mark> L</mark>		0.20 ± 0.53
0	BaBar		2 -0.7	2 ± 0.71 ± 0.08
R So	Average :		<u>, 7</u> 8	-0.72 ± 0.71
μ Σ°κ Σ	BaBar 2			0.97 ^{+0.63} 0.97 ^{+0.63}
K _s N R A	Average BaBar	<u> </u>	5 0.01 + 0.3	$0.97_{-0.52}$ $1 \pm 0.05 \pm 0.09$
X 3	Average	2		0.01 ± 0.33
,⊭,⊼	BaBar		9.0	5 ± 0.12 ± 0.03
+ × ×	Belle			0.76 +0.14
:	Average			0.68 +0.09
X.				
-2	-1	0	- 1	2

CP Violation in the B_s System

- The phase difference between the B_s mixing amplitude and $b \rightarrow c\bar{c}s$ decay amplitude of B_s meson is $\phi_s = 2\beta_s$, where in SM $\beta_s = \arg\left(-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)\right) \sim 1^{\circ}$ (35) $\beta_s = \arg\left(-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)\right) \sim 1^{\circ}$ (35)
- This is defined in analogy to β for B_d decays
- CDF, DO, CMS ATLAS and LHCb have measured β_s using the decay $B_s \rightarrow J/\psi\phi$
- LHCb added $B_s \rightarrow J/\psi \pi^+ \pi^-$ modes

- Perform a 2-D fit in the β_s - $\Delta \Gamma_s$ plane w & w/o other constraints
- Present world average is $\phi_s = 2\beta_s = (0.00 \pm 0.07)$ rad
- At ICHEP 2014, LHCb showed updated result with 3 fb⁻¹ of $B_s \rightarrow J/\psi \pi^+ \pi^-$ data • LHCb average $\phi_s = (0.07 \pm 0.055)$ rad

LHCb also measured ϕ_s in $B_s \rightarrow \phi \phi$ (3 fb⁻¹) yielding $\phi_s = (-0.17 \pm 0.15 \pm 0.03)$ rad

Study of the B_s Meson

• ATLAs performed a time-dependent full angular analysis of $B_s \rightarrow J/\psi\phi$ (26) parameter ML fit) to extract amplitudes, strong phases, Γ_s , $\Delta\Gamma_s$ and ϕ_s

 $\phi_{2} = (0.22 \pm 0.41 \pm 0.10)$ rad $\Delta\Gamma_{c} = (0.053 \pm 0.021 \pm 0.010) \text{ ps}^{-1}$ $\Gamma_{-} = (0.677 \pm 0.007 \pm 0.004) \text{ ps}^{-1}$

This agrees with results from CMS and LHCb and the SM predictions

4000

3500F

2500

2000

1500

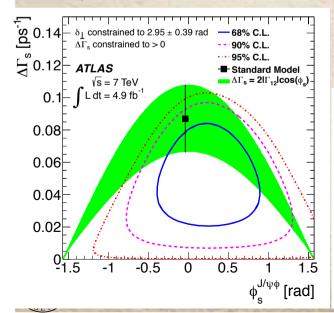
1000

500

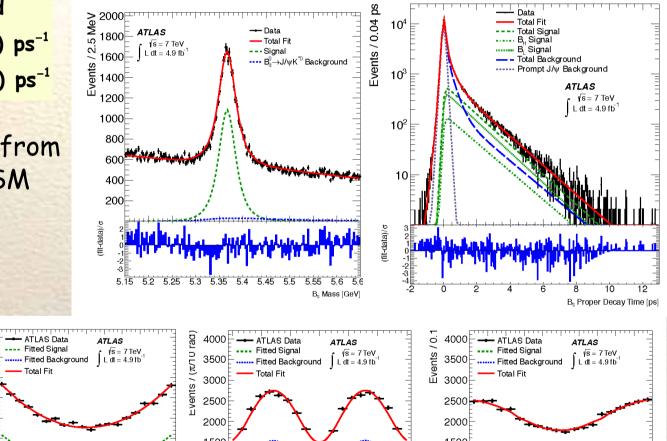
3500 Events 3000

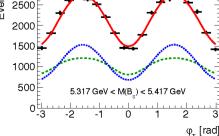
- ATLAS Data

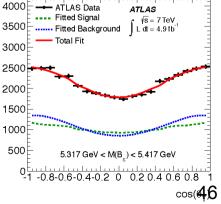
---- Fitted Signal


Total Fit

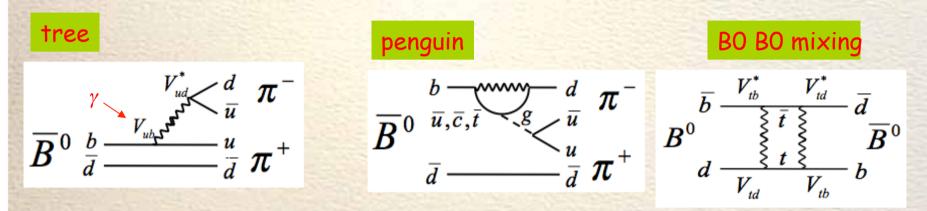
5.317 GeV < M(B_) < 5.417 GeV


 $\cos(\psi_{\perp})$

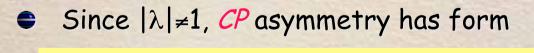

0^L-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8


o.

0

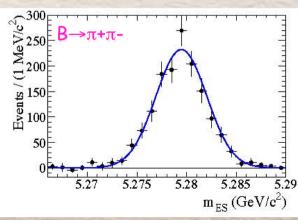


Measurement of sin2 α


• Interference of $b \rightarrow u\bar{u}d$ decay w&w/o B⁰B⁰ mixing yields angle α

(36)

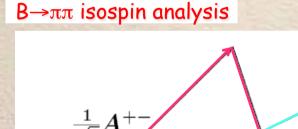
• Thus we need to measure Δt -dependent *CP* asymmetries of $b \rightarrow u \overline{u} \overline{d}$ processes, such as $B \rightarrow \pi \pi, \rho \pi, \rho \rho$, ...

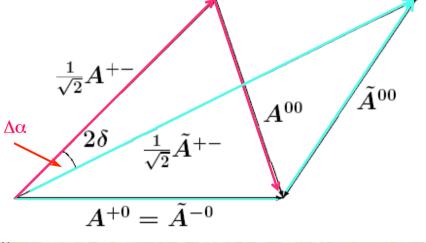

• However, penguin pollution complicates extraction of $\alpha \rightarrow$ measure sin $2\alpha_{eff}$

S

 $\mathcal{A}_{\pi\pi}(\Delta t) = -C_{\pi\pi} \cos \Delta m_{d} \Delta t + S_{\pi\pi} \sin \Delta m_{d} \Delta t$

 $= 2\Im m\lambda = \sin 2\alpha$

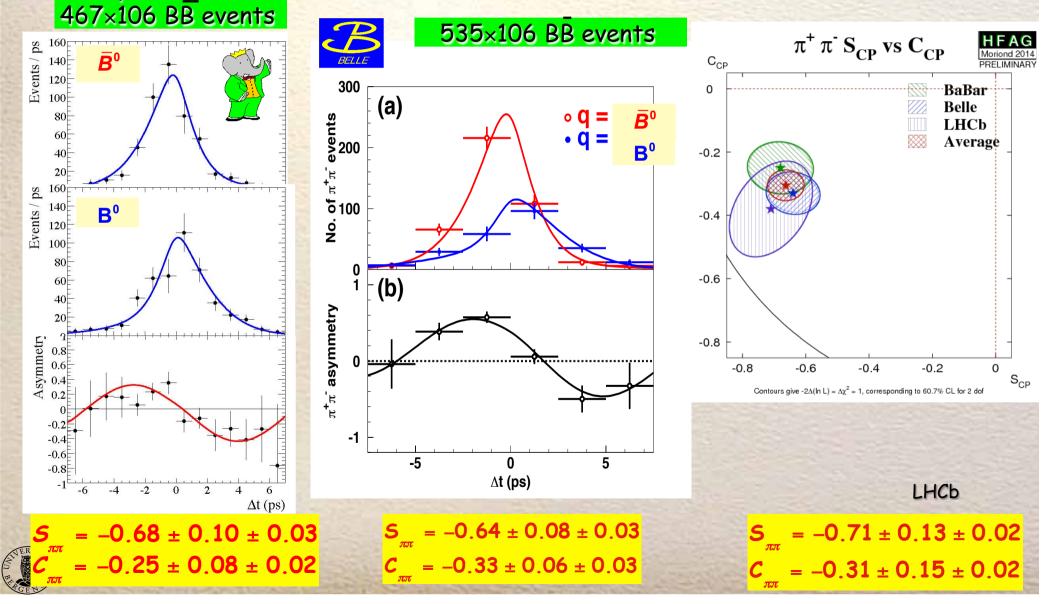



1394±54 events

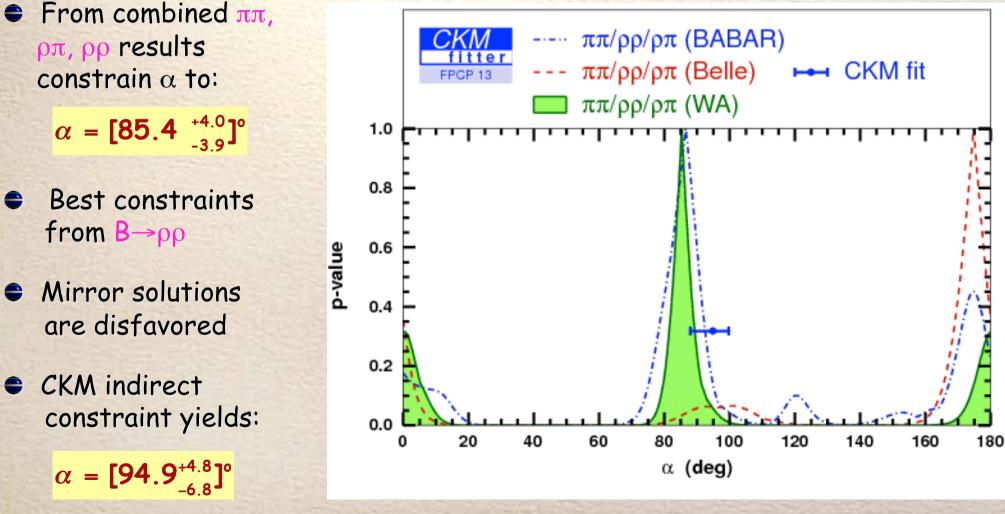
47

The Gronau-London Method

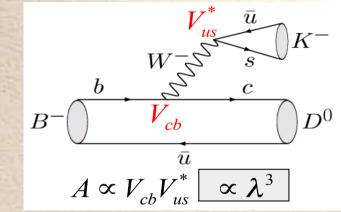
- $S_{\pi\pi}$ measures $2\alpha_{eff} = 2\alpha + \Delta \alpha$, where $\Delta \alpha$ can be determined using the Gronau-London method
- The decays $B \rightarrow \pi^+ \pi^-, \pi^+ \pi^0, \pi^0 \pi^0$ are related by SU(2) \rightarrow Have isospin relations between amplitudes A_{+-}, A_{+0}, A_{00}
- Central observation is that $\pi \pi$ states can have I=2 or 0, while gluonic penguins only contribute to $I = O(\Delta I = \frac{1}{2} \text{ rule})$ $\rightarrow \pi^+ \pi^0$ is pure I = 2, so only tree amplitude $\rightarrow |A+0| = |A-0|$

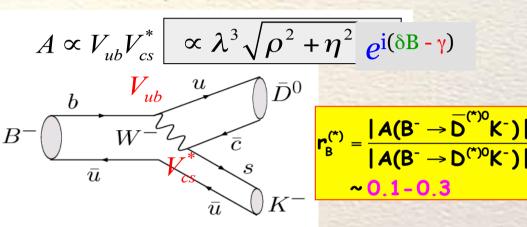


Need to measure: C_{+-} , C_{00} (amplitudes in Cos terms for $\pi^{+}\pi^{-}$ & $\pi^{0}\pi^{0}$), & A_{00} , A_{+0} → Effective isospin analysis requires A₀₀ & A₀₀ very large, or very small!


Measurement of sin2 α in B $\rightarrow \pi\pi$

• Compare results on $B \rightarrow \pi\pi$ from BABAR, Belle and LHCb

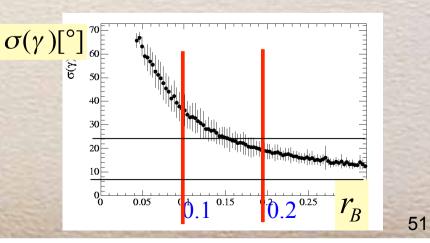

Summary of α Measurements

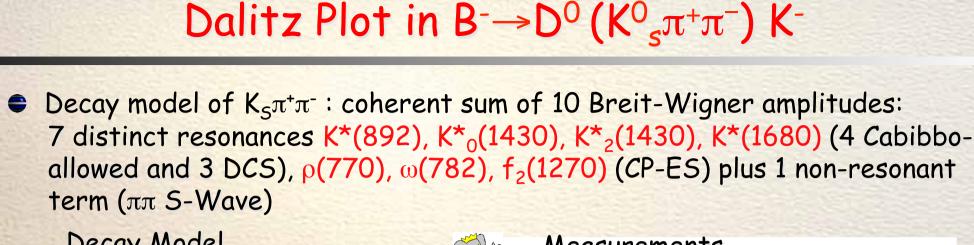

Summary on α measurements

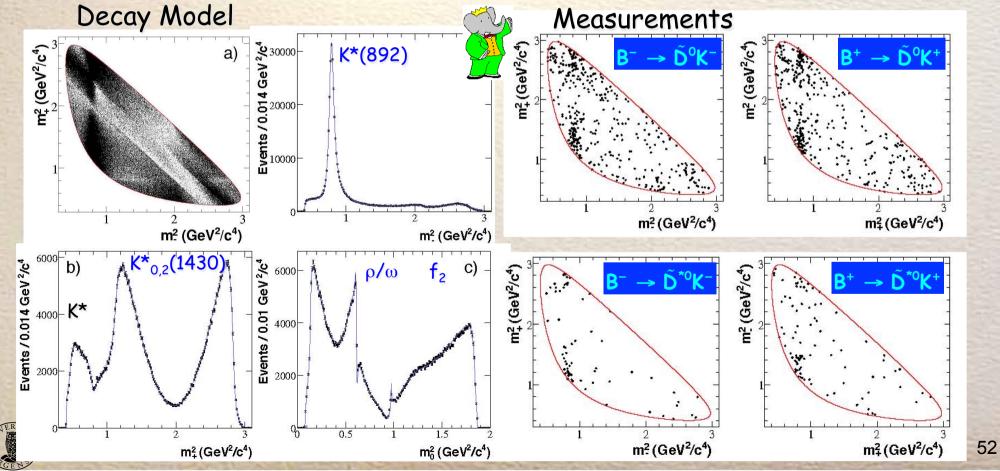
Measurement of Angle γ

• The angle γ is measurable via interference between $B^- \rightarrow D^0 K^- \& B^- \rightarrow D^0 K^-$ decays, where the $D^0 / \overline{D^0}$ decay to common final state

Use 3 different methods:
Gronau-London-Wyler (GLW 1991)

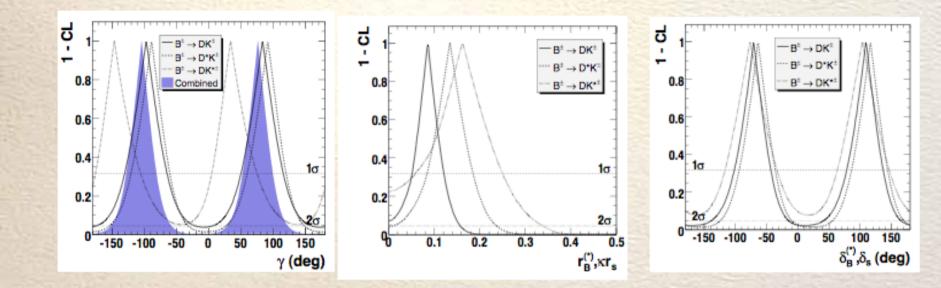

Use $B^- \rightarrow D^0_{CP^\pm} K^-$ decays


Atwood-Dunietz-Soni (ADS 2001)


 Use B⁻ → D^{(*)0}(K⁻π⁺)K⁻ decays
 Giri, Grossman, Soffer Zupan (GGSZ) D⁰ Dalitz plot analysis

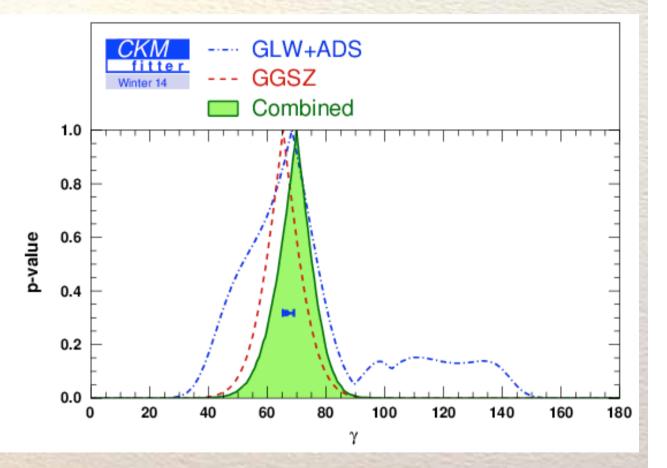
Use $B^- \rightarrow D^0 (K_s^0 \pi^+ \pi^-) K^-$ decays

Size of the CP asymmetry & error on γ depends on $r^{(*)}_{B}$



Measurement of Angle γ in B⁻ \rightarrow D⁰ (K⁰_s $\pi^+\pi^-$) K⁻

• From the B⁻ $\rightarrow D^{(*)0}K^-$ & corresponding decays BABAR extracts γ , r_B and δ_B

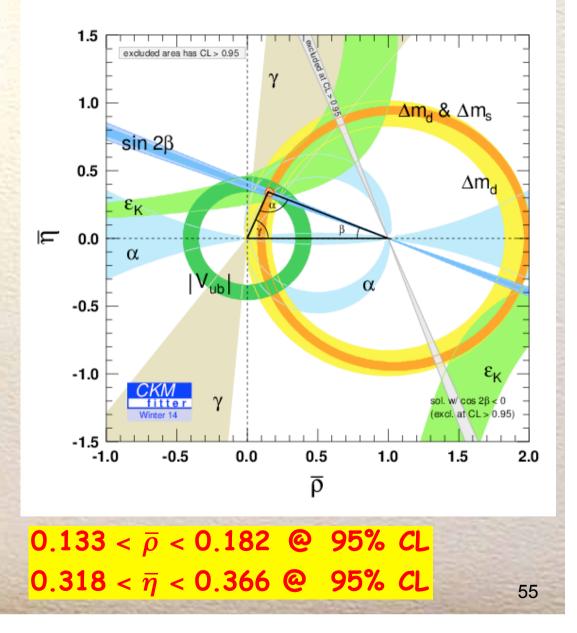


We get 2-fold ambiguity: $(\gamma, \delta(*)_B) \rightarrow (\gamma + \pi, \delta(*)_B + \pi)$

 $r_{B} = 0.085 \pm 0.035 \pm 0.010 \pm 0.011$ $r_{B}^{*} = 0.135 \pm 0.051 \pm 0.011 \pm 0.005$ $\delta_{B} = (109^{+28}_{-31stat} \pm 4_{sys} \pm 7_{Dalitz})^{\circ}$ $\delta_{B}^{*} = (63^{+28}_{-30stat} \pm 5_{sys} \pm 4_{Dalitz})^{\circ}$ $\gamma = (76 \pm 22_{stat} \pm 5_{sys} \pm 5_{Dalitz model})^{\circ}$ $\gamma = (76^{+12}_{-13} \pm 4_{sys} \pm 9_{Dalitz model})^{\circ}$

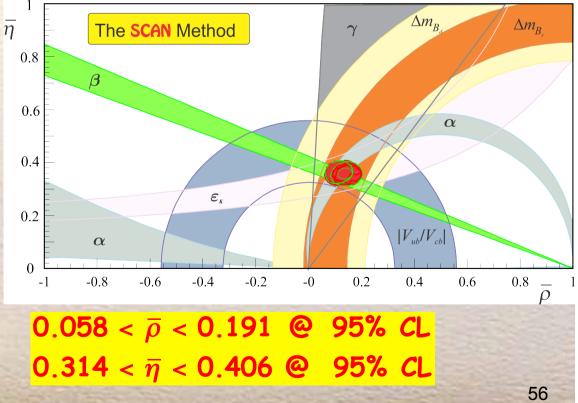
Summary of γ Measurements

- Combining all 3 methods for $B^- \rightarrow D^{(*)0}K^{(*)-}$ yields first measurement of γ
- A few years ago this was thought to be impossible
- From combined analysis $\gamma = [70.0 + 7.7]^{\circ}_{-9.0}$
- From indirect constraints $\gamma = [66.4 + 1.2]^{\circ}_{-3.3}]^{\circ}$


 γ measurements obtained from 2 independent methods are in good agreement (errors are still large)

Present Status of Unitarity Triangle

- Global fit in ρ - η plane using V_{ub} , V_{cb} , Δm_d , Δm_s , ε_K , sin 2 β , cos 2 β , sin 2 α , γ
- Measurements of 3 sides agree with measurements of the 3 angles
 A expect this in the SM
 A no O(1) New Physics effects
- Since the SM works so well, look for New Physics as a correction to the SM at O(0.1)


 $88.9^{\circ} < \alpha < 97.3^{\circ}$ @ 95% CL $20.5^{\circ} < \beta < 23.5^{\circ}$ @ 95% CL $61.4^{\circ} < \gamma < 68.9^{\circ}$ @ 95% CL

Present Status of Unitarity Triangle in Scan Method

- Perform a fit using 256 measurements and 114 parameters
 - \rightarrow use all available \mathcal{B} and \mathcal{A}_{CP} measurements in $B \rightarrow PP$, PV, VV, a_1P for α
 - → use B & A_{CP} measurements in $B^- \rightarrow D^{(*)0}K^-(\pi^-)$, $B^- \rightarrow D^0K^{*-}(\rho^-)$ for γ
 - → use ε_K , Δm_d , Δm_s , sin 2 β , $\mathcal{B}(B \rightarrow \tau^{\pm} v)$, m_t , m_c and CKM matrix elements
- Theory uncertainties δ in V_{ub} , V_{cb} , f_{Bd} , B_{Bd} , f_{Bs} , B_{Bs} , B_{K} have a non-Gaussian part that we scan over
- So we select particular values within $\pm 1\delta$ and perform a fit
- For P(χ²)> 5%, we plot contours in the ρ−η plane
 → allowed range is envelope of all contours

TViolation in

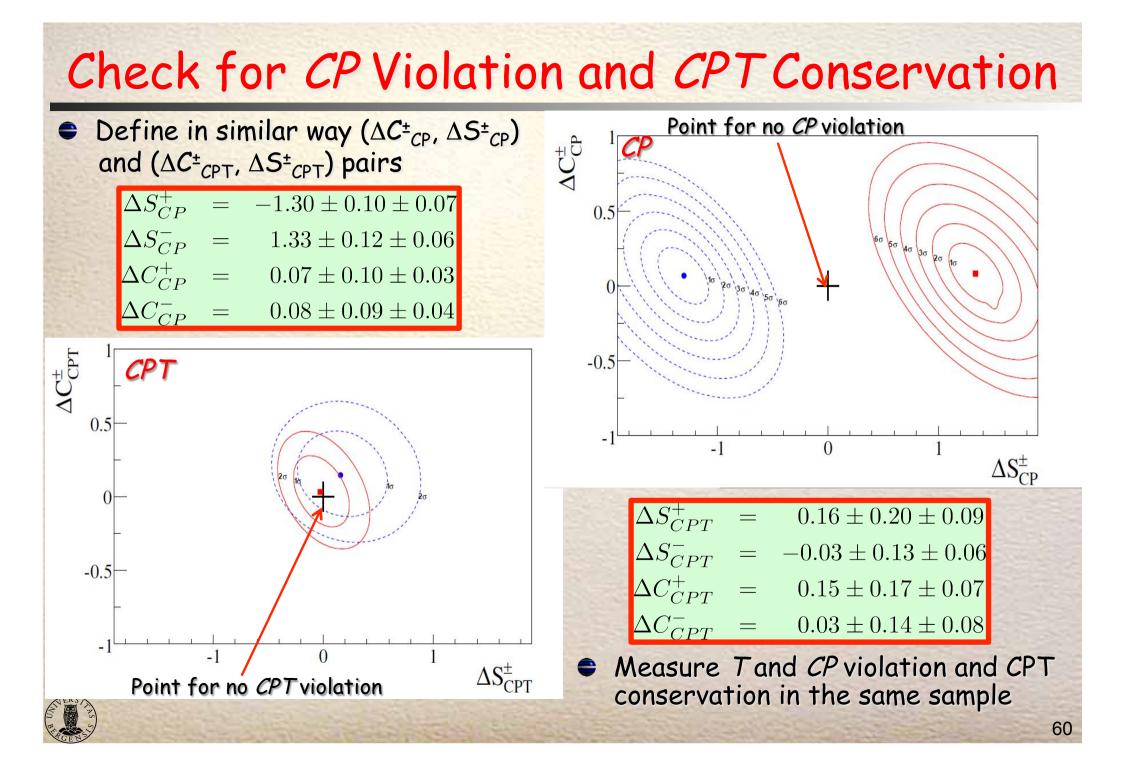
the B System

T Violation

The $B^0\overline{B^0}$ system produced at the Y4S) is unique for measuring T violation

>∆t

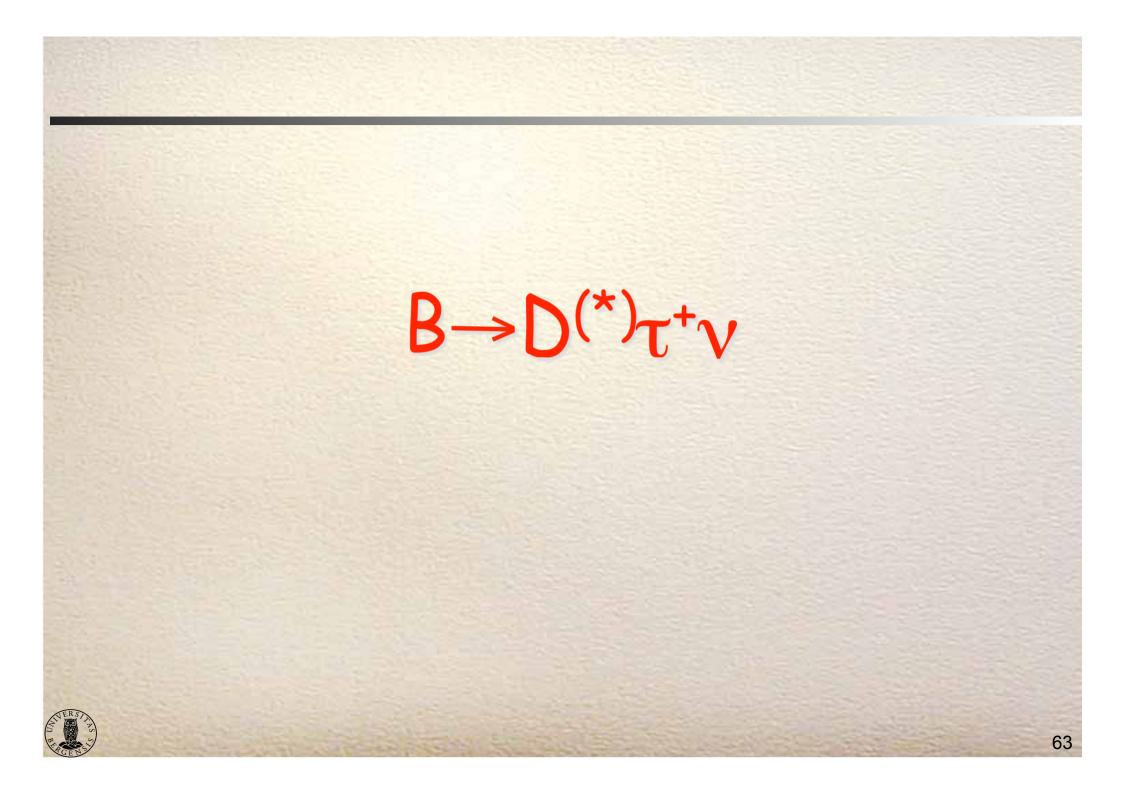
Use the decay $B \rightarrow J/\psi K^0$ and explore time distribution


> Define B₊: CP even B_: CP odd

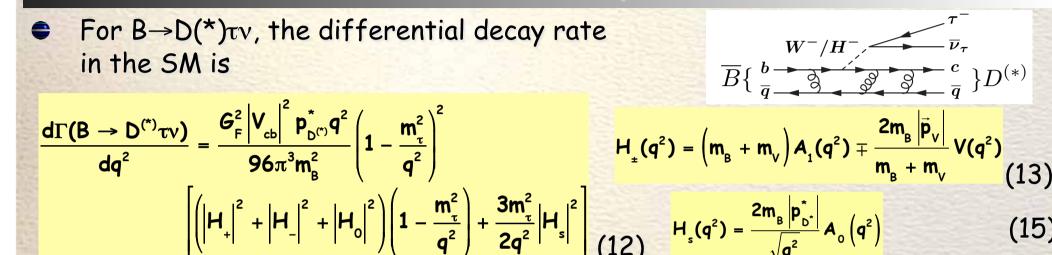
В $B \rightarrow B^{\circ}$ $\overline{B}^{0} \rightarrow B$ $\overline{B}^{0} \rightarrow B$ $B \rightarrow B^0$ tag: l 0.4 0.2 -1 $B \rightarrow \overline{B}^{\circ}$ $B_{\perp} \rightarrow \overline{B}^{0}$ $B^0 \rightarrow B$ tag: l 0.4 0.2 0.2 -1 Decay: $J/\psi K_L$ (*CP*=+1) Decay: $J/\psi K_s$ (CP=-1) We construct: $\Delta S_{\tau}^{+} = S_{\ell^{-}, \mathcal{K}_{L}^{0}} \left(\Delta t < 0 \right) - S_{\ell^{+}, \mathcal{K}_{S}^{0}} \left(\Delta t > 0 \right) \qquad \Delta C_{\tau}^{+} = C_{\ell^{-}, \mathcal{K}_{L}^{0}} \left(\Delta t < 0 \right) - C_{\ell^{+}, \mathcal{K}_{S}^{0}} \left(\Delta t > 0 \right) \qquad \text{where } S_{X,Y} \text{ and } C_{X,Y} \text{ come from time-dep asymmetries as } \mathcal{A}_{CP 58}$

T Violation Asymmetries

Define 4 asymmetries, e.g. $A_{\tau} = \frac{N(B_{+} \rightarrow \overline{B}^{\circ}) - N(\overline{B}^{\circ} \rightarrow B_{+})}{N(B_{+} \rightarrow \overline{B}^{\circ}) + N(\overline{B}^{\circ} \rightarrow B_{+})} \approx \frac{\Delta C_{\tau}^{+}}{2} \cos \Delta m \Delta t + \frac{\Delta S_{\tau}^{+}}{2} \sin \Delta m \Delta t$ (37) \blacksquare The A_T asymmetries clearly show ${ \overleftarrow{\leftarrow}}_{0.5} = \overline{B^0} o B_ { \triangleleft}^{\vdash}_{0.5} B_+ o B^0$ the expected T violation -0.5 -0.5 • Plot of ΔC^{\pm}_{T} versus ΔS^{\pm}_{T} shows a 14 σ 2 Δt (ps) Δt (ps) effect $\left\langle \overline{B}^{0} \rightarrow B_{+} \right\rangle$ $\left< \stackrel{}{B}_{0.5} \right> B^0$ point for no T violation ΔC_T^{\pm} -0.5 -0.5 0.5 0 2 4 0 2 6 Δt (ps) Δt (ps) $-1.37 \pm 0.14 \pm 0.06$ $1.17 \pm 0.18 \pm 0.11$ -0.5 $0.10 \pm 0.16 \pm 0.08$ $0.04 \pm 0.16 \pm 0.08$ 0 ΔS_{T}^{\pm}


Conclusion and Outlook

- B physics has produced many interesting results and is still a very active field
- ➡ The Belle II upgrade is in full progress → expect data taking 2016?
- ELHCb is planning a full detector upgrade for the 2018 shutdown
- In the next decade, LHCb and Belle II will make many more precision measurements


Туре	Observable	Current precision (Spring 2012)	LHCb 2018 (7-8 fb ⁻¹)	Upgrade (50 fb ⁻¹)	Theory uncertainty
$\overline{B_s^0}$ mixing	$2\beta_s(B^0_s o J/\psi\phi)$	0.10 [139]	0.025	0.008	~0.003
Gluonic penguins	$2\beta_s^{\rm eff}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\overline{K}^{*0})$	_	0.13	0.02	< 0.02
Right-handed currents	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
Electroweak penguins	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [68]	0.025	0.008	0.02
	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25 % [68]	6 %	2 %	7 %
Higgs penguins	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [13]	$0.5 imes 10^{-9}$	$0.15 imes 10^{-9}$	0.3×10^{-9}
Unitarity triangle angles	$ \begin{aligned} \mathcal{B}(B^0 &\to \mu^+ \mu^-) / \mathcal{B}(B^0_{\circ} \to \mu^+ \mu^-) \\ \gamma(B &\to D^{(*)} K^{(*)}) \end{aligned} $	_ ~10−12° [252, 266]	${\sim}100~\%$ 4°	$\sim 35 \% \\ 0.9^{\circ}$	$\sim 5 \%$ negligible
	$\gamma(B^0_s \to D_s K)$	-	11°	2.0°	negligible
Ceda	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	0.8° [44]	0.6°	0.2°	negligible 61

Backup Slides

$B^- \rightarrow D\tau^- \nu$ Decay Rate

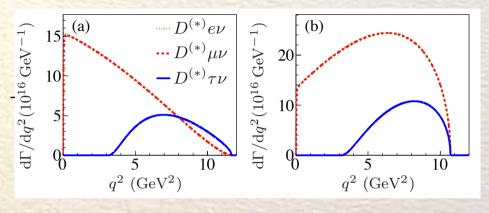
where H_i are the helicity amplitudes that are functions of formfactors

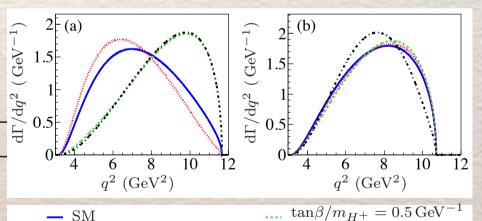
$$H_{o}(q^{2}) = \frac{m_{B} + m_{V}}{2m_{V}\sqrt{q^{2}}} \left[\left(m_{B}^{2} - m_{V}^{2} - q^{2}\right)A_{1}(q^{2}) - \frac{4m_{B}^{2}\left|\vec{p}_{V}\right|^{2}}{\left(m_{B} + m_{V}^{2}\right)^{2}}A_{2}(q^{2}) \right]$$

(14)

Charged Higgs decays may enhance the decay rate

• In the 2Higgs Doublet Model (2HDM) type II the decay rate is multiplied by $\begin{pmatrix}
1 - \frac{\tan^2 \beta}{m_{\mu^{\mu}}^2} \frac{q^2}{1 \mp \frac{m_e}{m_b}}
\end{pmatrix}^2 \quad \text{where } \beta \text{ is the ratio} \\
\text{of the VEVs of the 2 doublets} \\
(16)$


$B \rightarrow D\tau v$ Higgs Contribution

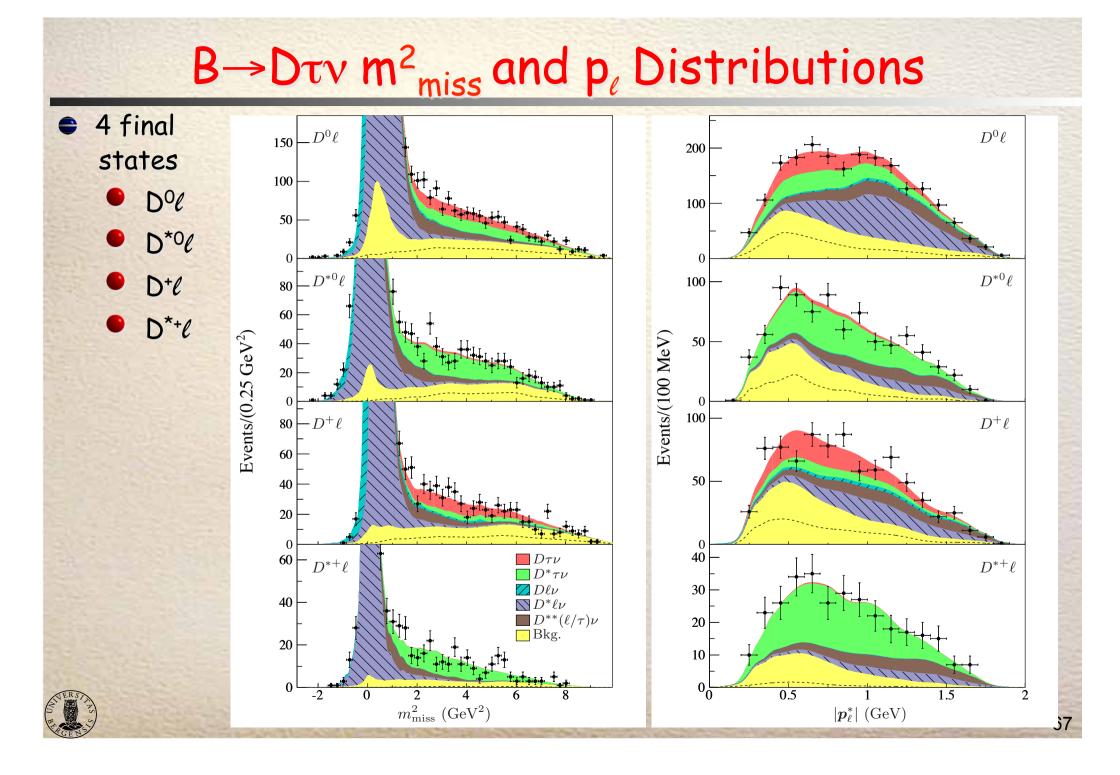

- $B \rightarrow D(^*)\tau v$ may get sizable contributions from H⁻ compared to $B \rightarrow D(^*)\mu v$ due to the large τ mass that also reduces the $B \rightarrow D(^*)\tau v$ phase space
- The shape of the q² spectrum is modified by H[±] contributions
- The strategy is to measure the ratios

$$\mathbf{R}(\mathbf{D}) = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{D}\tau^{-}\overline{\mathbf{v}})}{\mathcal{B}(\overline{\mathbf{B}} \to \mathbf{D}\ell^{-}\overline{\mathbf{v}})} \qquad \ell=e,\mu$$

$$\mathsf{R}(\mathsf{D}^{\star}) = \frac{\mathcal{B}\left(\overline{\mathsf{B}} \to \mathsf{D}^{\star}\tau^{-}\overline{\nu}\right)}{\mathcal{B}\left(\overline{\mathsf{B}} \to \mathsf{D}^{\star}\ell^{-}\overline{\nu}\right)}$$

The ratios are independent of |V_{cb}| & to a large extent to hadronic matrix elements

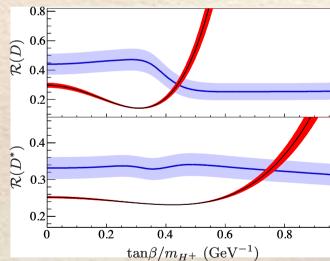
In the SM

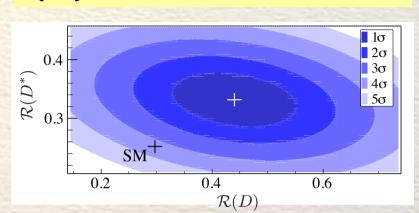

 $R(D) = 0.297 \pm 0.017$

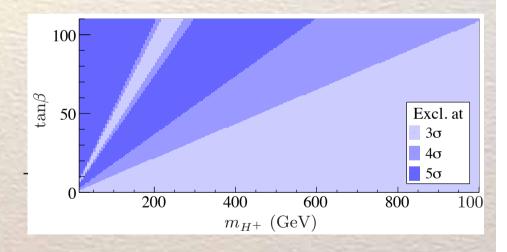
 $R(D^*) = 0.252 \pm 0.003$

$B \rightarrow D\tau v$ Analysis

- Experimentally, we reconstruct one B in a hadronic final state using 2968 individual modes, called B_{tag}
- For each B_{tag}, we look for a semileptonic decay, i.e. a lepton and a D or D*
- We reconstruct the τ only in leptonic decays, → get signal and normalization modes
- The D⁰ (D⁺) is reconstructed in 5 (7) final states, the D^{*+} in D⁰ π^+ , D⁺ π^0 and D^{*0} in D⁰ π^0 , D⁰ γ
- Backgrounds originate from $B \rightarrow D^{**} \tau/\ell v$, generic BB and qq continuum
- For signal events, there are three neutrinos → we look at various kinematic observables: q², p₁ (lepton momentum), m²_{miss} (missing mass squared), ΔE=E_{tag}-E_{beam}, m_{ES}=(E2_{beam}-p2_{tag})1/2, E_{extra} (extra neutral E in calormeter)






$B \rightarrow D\tau v$ Implications on 2HDM

• Measure $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

- This is much higher than the SM prediction, disagreement of R(D) and R(D*) with the SM is 3.40
- We can compare the measurements with the predictions of 2HDM

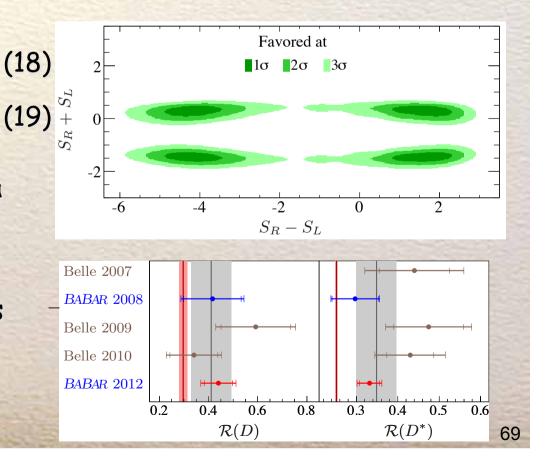
The combination of R(D) and R(D*) excludes 2HDM, since allowed regions 0.44±0.02 GeV-1 and 0.75±0.02 GeV-1 do not overlap

The type III 2HDM still has two solutions

$B \rightarrow D\tau v$

- Lets look at a type III 2HDM including scalar and pseudoscalar contributions
- This modifies R(D) and R(D*)

$$\mathbf{R(D)} = \mathbf{R(D)}_{SM} + \mathbf{A}'_{D} \mathbf{Re(S}_{R} + \mathbf{S}_{L}) + \mathbf{B}'_{D} \left|\mathbf{S}_{R} + \mathbf{S}_{L}\right|^{2}$$
(1)

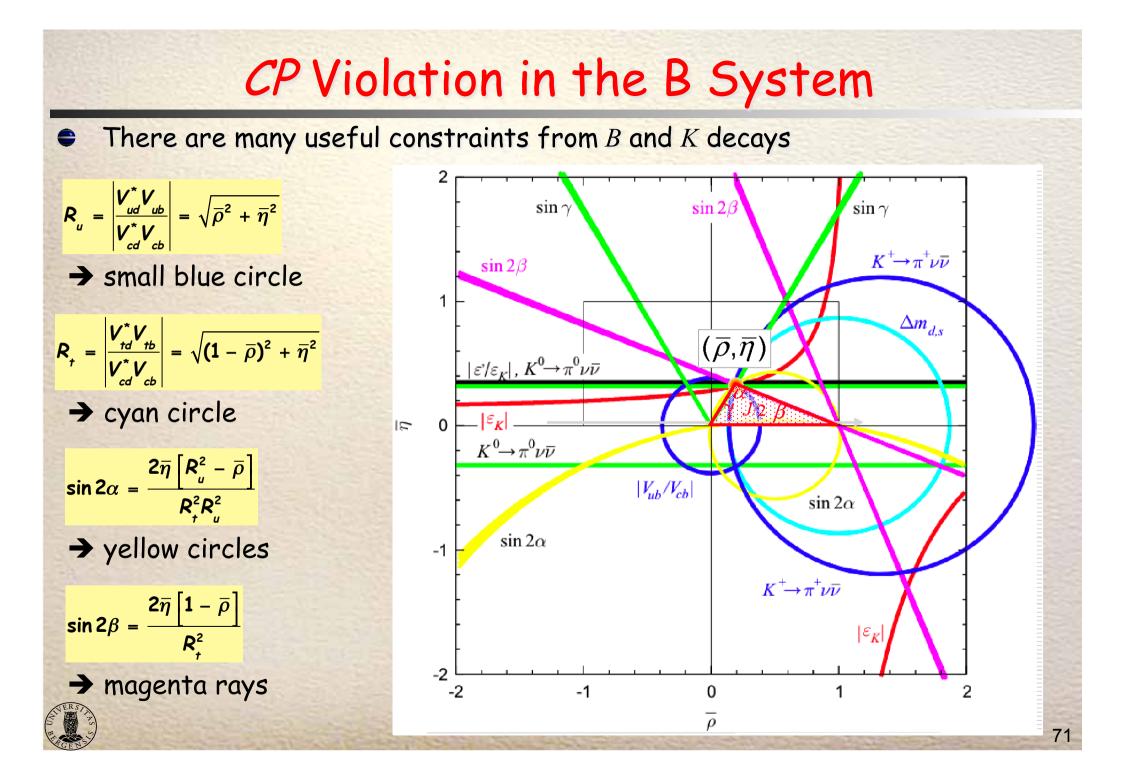

$$R(D^{*}) = R(D^{*})_{SM} + A'_{D^{*}}Re(S_{R} - S_{L}) + B'_{D^{*}}|S_{R} - S_{L}|^{2}$$
 (1)

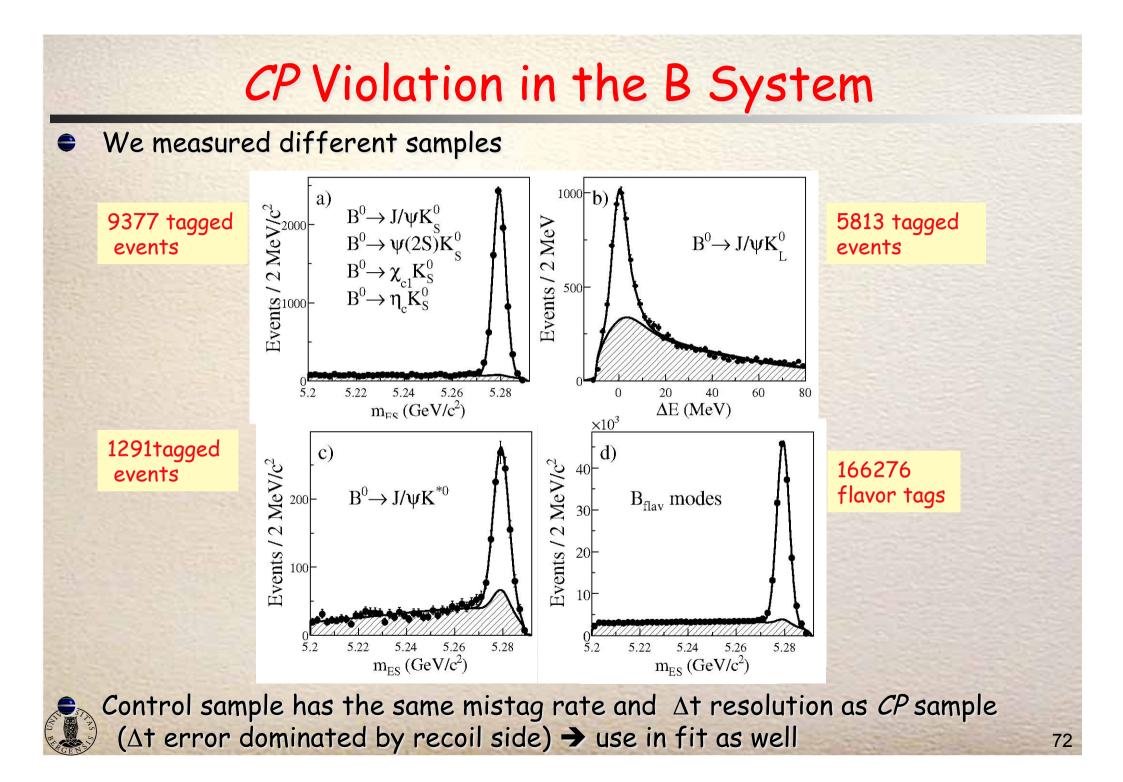
There are 4 solutions, the q² spectra disfavor those at S_R+S_L=-1.5

- BABAR results are in good agreement with other measurements
- Is this a hint for new physics?

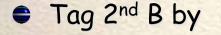
$$H_{eff} = \frac{4G_{F}V_{cb}}{\sqrt{2}} \left[\left(\overline{c}\gamma_{\mu}P_{L}b \right) \left(\overline{\tau}\gamma^{\mu}P_{L}v_{\tau} \right) + S_{L}\left(\overline{c}P_{L}b \right) \left(\overline{\tau}P_{L}v_{\tau} \right) + S_{R}\left(\overline{c}P_{R}b \right) \left(\overline{\tau}P_{R}v_{\tau} \right) \right]$$

$$(17)$$

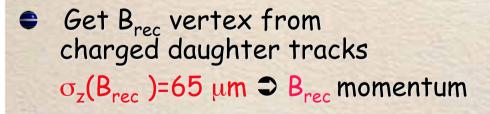

Unitarity Conditions of the CKM Matrix


CP asymmetries in BO decays into CP eigenstates provide a good way to measure the 3 angles of the Unitarity Triangle, defined by

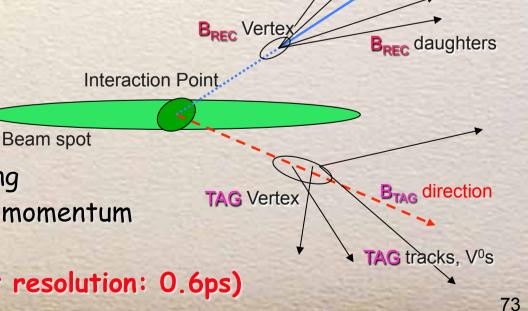
$$\alpha = Arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right), \quad \beta = Arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right), \quad \gamma = Arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right) \quad |V_{ud}V_{ub}| \quad |V_{ud}V_{ub}^{*}| \quad$$


• Measurement of γ is more complicated (see later)

The goal is to make many independent measurements of both sides
and angles of the Unitarity Triangle to overconstrain it -> test SM



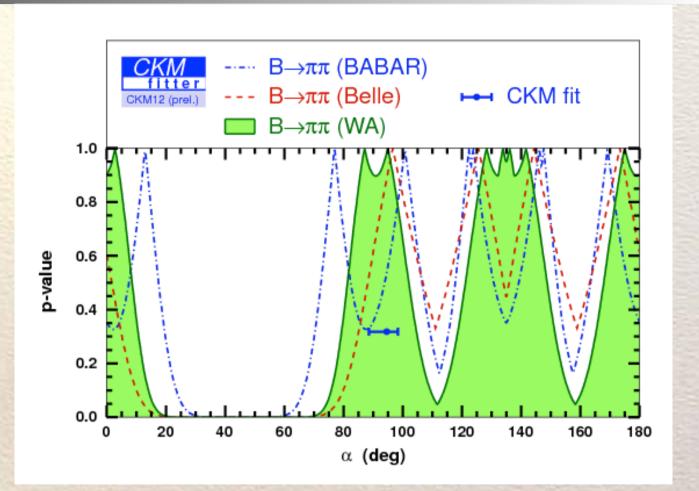
Tagging and Δt Reconstruction



- Tagging quality $Q = \varepsilon (1 - 2\omega)^2 \quad (33)$
- Error on $sin 2\beta$ depends on tagging quality
- Error on sin2 β depends on tagging quality: Q=31.2±0.3%, ϵ =(74.37±0.1)%
- Δt reconstruction:

 Determine B_{tag} vertex from remaining charged tracks B_{tag} vertex & B_{tag} momentum

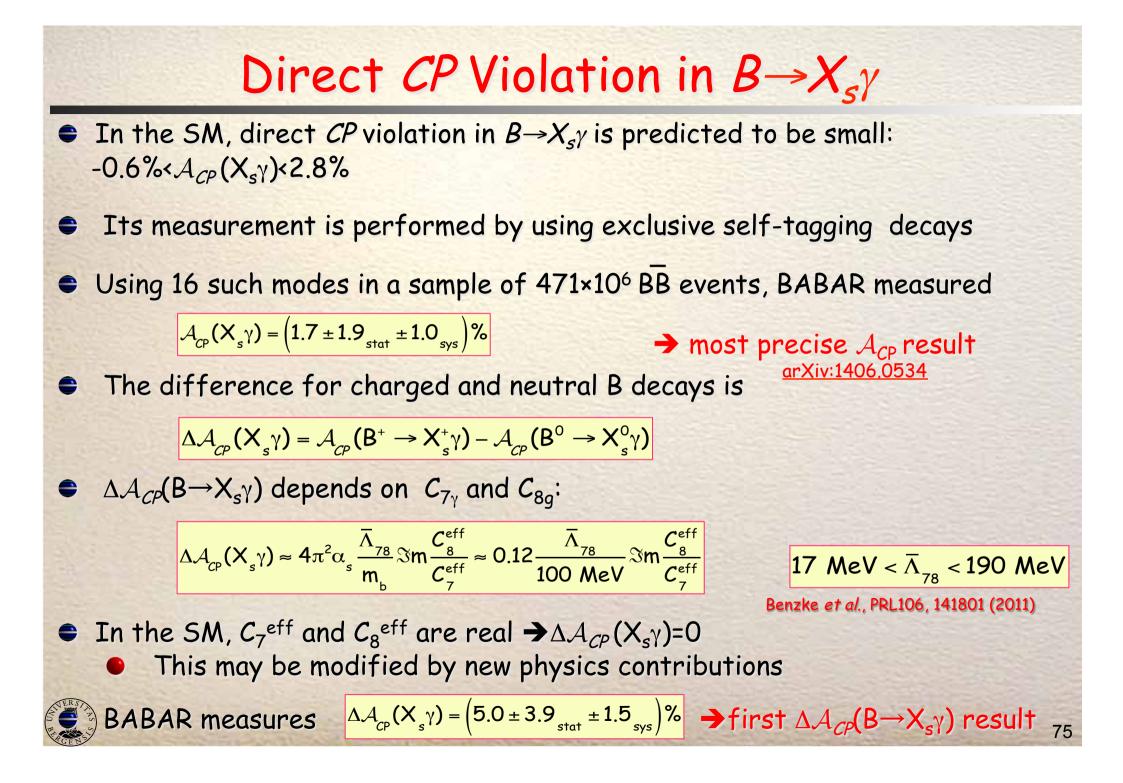
(34)

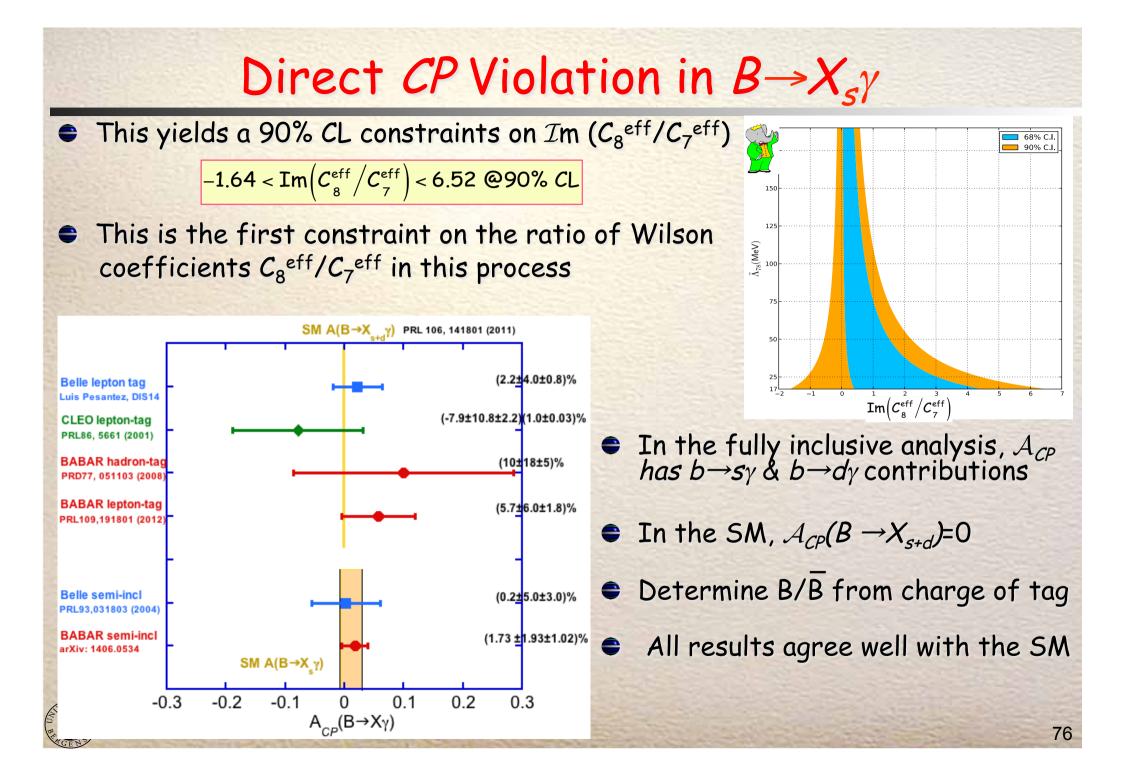

B_{REC} direction

 π

 $\sigma(\sin 2\beta) \propto \frac{1}{\sqrt{\rho}}$

Extraction of α from $B \rightarrow \pi\pi$


• Use as inputs: $\mathcal{B}(BO \rightarrow \pi + \pi -)$ $\mathcal{B}(BO \rightarrow \pi O \pi O)$ $\mathcal{B}(B \pm \rightarrow \pi \pm \pi O)$ $S_{\pi + \pi -}$ $C_{\pi + \pi -}$ $C_{\pi 0 \pi O}$



• For $B \rightarrow \pi\pi$ obtain no stringent constraint on α

→ Need either also measurements from $B \rightarrow \rho \pi$, $B \rightarrow \rho \rho$, & $B \rightarrow a_1 \pi$

 \rightarrow or need to combine all measured B \rightarrow PP modes

B⁰B⁰ Mixing

B⁰_d and B⁰_s can oscillate into their antiparticles B⁰_d and B⁰_s, respectively

$$\frac{b}{B^{0}} \xrightarrow{W} d,s$$

$$\frac{b}{u,c,t} \xrightarrow{u,c,t} d,s$$

$$\frac{b}{u,c,t} \xrightarrow{U,c,t} d,s$$

$$\frac{b}{W} \xrightarrow{u,c,t} d,s$$

$$\frac{b}{W} \xrightarrow{U,c,t} d,s$$

$$B^{0}$$

$$\frac{b}{W} \xrightarrow{U,c,t} d,s$$

$$B^{0}$$

$$\frac{b}{d,s} \xrightarrow{U,c,t} d,s$$

$$B^{0}$$

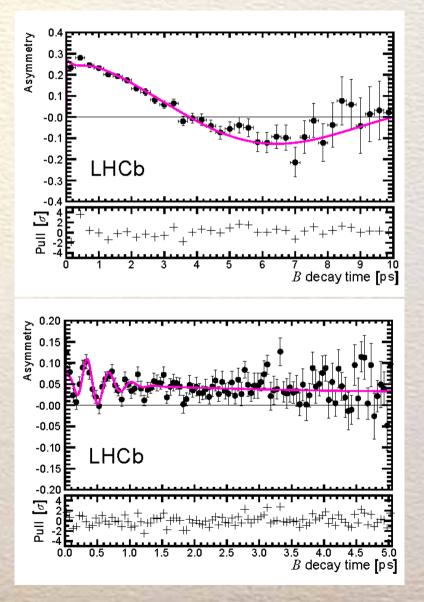
$$B$$

box diagrams

The Hamiltonian of the B⁰B⁰ system has a mass matrix M and a decay matrix Γ
 M corresponds to a phase in the wave function while Γ corresponds to a probability density, which decays exponentially with time and has the characteristic decay width

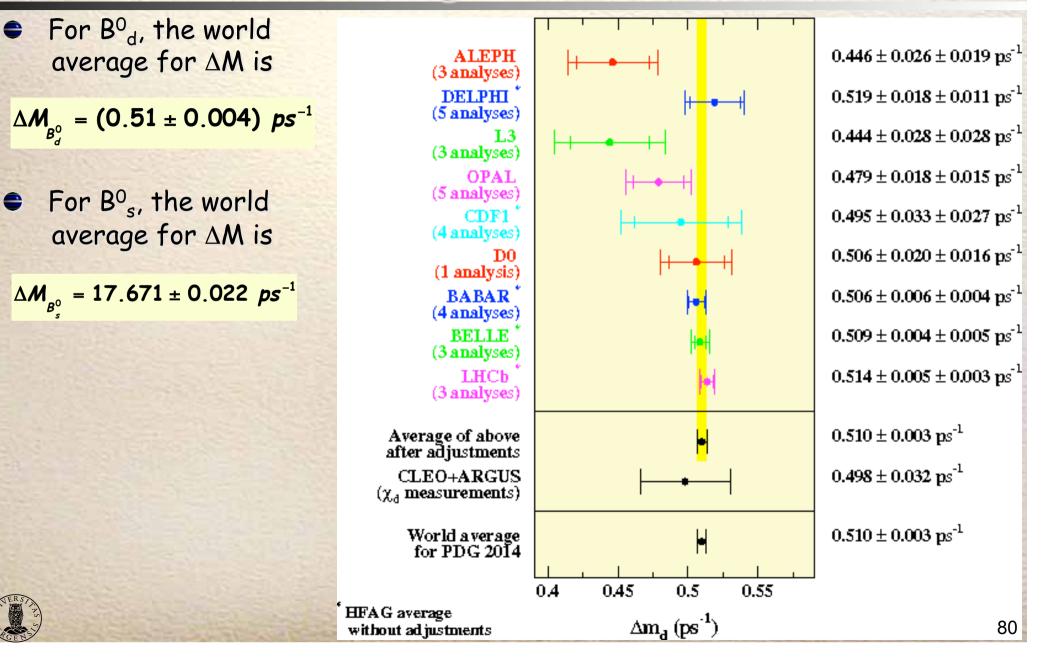
By diagonalizing the Hamiltonian, we obtain 2 CP eigenstates whose

• masses differ by $\Delta M = 2\Re e_{\sqrt{M_{12}^2 - \frac{1}{2}\Gamma_{12}}} \left(M_{12}^* - \frac{1}{2}\Gamma_{12}^*\right)$ (20) where M_{12} & Γ_{12} are the off diagonal matrix elements of M and Γ , respectively


$B_d^0 \overline{B}_d^0$ and $B_s^0 \overline{B}_s^0$ Oscillation

For a top quark in the box diagram, the |\DAB|=2 weak Hamiltonian yields a mass difference of

$$\Delta M = \frac{G_{F}}{6\pi^{2}} B_{B} f_{B}^{2} m_{B} \left| V_{td}^{*} V_{tb} \right|^{2} M_{W}^{2} S_{0}(x_{t}) \eta_{B}$$
(21)


where G_F is the Fermi constant, f_B is the B_d^0 decay constant, B_B is the bag factor, V_{tb} and V_{td} are CKM matrix elements, m_B is the B_d^0 mass, M_W is the W boson mass, $S_0(m_t^2/M_W^2)$ is the function of the box, m_t is the top quark mass and η_B is a QCD factor $\rightarrow f_B \& B_B$ have theory uncertainties

For B⁰_s, △M is gotten from eq (21) by replacing f_B, B_B, m_B, and |V^{*}_{td}V_{tb}|² with the corresponding B⁰_s quantities

B⁰**B**⁰ Mixing Measurements

