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Outline 

• Calorimetric measurements 

– Electromagnetic calorimeters 

– Hadronic calorimeters 

• From Photons to GeV (Calibration of TileCal 
Cells) 

• From Particles to Jets (Measurement of Jets in 
ATLAS) 
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Showers Development 
• Neutral and charged particles incident on a block 

of material deposit their energy through creation 
and destruction processes 

• The deposited energy is rendered measurable by 
ionization or excitation of the atoms of matter in 
the active medium 

• The active medium can be the block itself 
(homogenous calorimeter) or light active layers 
sandwiched with dense absorber layers 
(sampling calorimeter) 

 

The development of EM showers 𝑒, 𝛾  is 
characterized by  

• the Critical Energy 

 

𝜀 ≅
560

𝑍
 MeV  

 

above which radiation overcome ionization (in     
the case of lead 𝜀 ≅ 7 MeV ) and   

 

• the Radiation Length defined by the distance 
over which the electron loses, on average, all but 
1/e of its energy 

 

𝑋0 =
180𝐴

𝑍1/3
 [gcm−2] 

 

(in the case of lead 𝑋0 = 0.56 [cm]) 

 

The development of hadronic showers 𝜋, 𝑝, . .  is 
characterized by 

• the Interaction Length 

  
 = 35 × 𝐴1/3 gcm−2  

 

In the case of materials used in calorimetry  ranges 
between 10 and 40 cm 
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Electromagnetic Cascade 

Longitudinal Development 

• Critical energy electrons do not travel 
far ( 1 𝑋0). After the shower 
maximum, the remaining energy of 
the cascade is carried forward by ’s 
giving the typical exponential falloff 

• The different shapes are due to lower 
𝜖 for higher Z material 

Lateral Development 

• The e.m. shower begins, and persists, 
with a narrow core of high energy 
cascade particles, surrounded by a halo 
of soft particles which scatter increasingly 
as the shower depth increases 

• In different material the lateral extend 
scales with the Moliere radius 

 

𝑅𝑀 =
7𝐴

𝑍
gcm−2  

 

• An infinite cylinder with a radius of 1 𝑅𝑀 
contains about 90% of the shower energy 
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Hadronic Cascade 

Longitudinal Development 

• The interaction responsible for shower 
development is the strong interaction 
rather than electromagnetic 

• The cascade contains two distinct 
components namely the 
electromagnetic one (𝜋0) and the 
hadronic one (𝜋±, n) 

• The number of independent particles in 
the hadronic cascade is smaller by 
𝐸𝑡ℎ 𝜀 . The intrinsic resolution will be 
worse at a least by a factor 

𝐸𝑡ℎ 𝜀   3 𝐸𝑡ℎ2𝑚𝜋 = 280 MeV  

• Over 9 interaction lengths () are 
required to contain almost all the 
energy of high energy hadrons  

Lateral Development 

• High energy hadronic showers show a 
pronounced core, caused by the 𝜋0 
component with a characteristic 
transverse scale of 𝑅𝑀, surrounded 
by an exponentially decreasing halo 
with scale . 
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Energy Response and Resolution 
• The energy response of calorimeters is parameterized as 

 
𝐸𝑣𝑖𝑠 = 𝐿𝐸 + 𝑁 

 

– Where 𝐸𝑣𝑖𝑠 is the visible energy, 𝐿 is the linearity term and 𝑁 includes the energy 
equivalent to the electronics noise and the energy carried by particles other than the 
one(s) of interest (pileup) 

 

• The energy resolution is parameterized as 

 
𝜎

𝐸
=
𝜎𝑠𝑡𝑜𝑐
𝐸
  
𝜎𝑛𝑜𝑖𝑠𝑒
𝐸
 
𝜎𝑙𝑖𝑛
𝐸
=
𝑎

𝐸
  
𝑏

𝐸
  𝑐 

 

– The first term, with coefficient 𝑎, is the stochastic term and accounts for statistical 
fluctuations in the number of signal generation processes  

– The second term, with coefficient b, is the noise term and includes the fluctuations in 𝑁 

– The last term, with coefficient c, is the constant term that accounts  for the fluctuations in 
𝐿 due non uniformities, the amount of energy leakage  and the contribution from e.m 
component in the hadronic shower 6 



Energy Resolution of EM 
Homogenous Calorimeters 

• In homogenous calorimeters the stochastic term is determined by the fluctuation 
in the number n of ions and/or photons produced.  If W is the mean energy 
required to produce an electron-ion pair (or a photon) then 𝑛 = 𝐸 𝑊 , and 

 

𝜎𝑠𝑡𝑜𝑐
𝐸
=
𝜎𝑖
𝐸
=
𝑛

𝑛
=
𝑊

𝐸
→ 𝑎 = 𝑊 

 

• Lead glass shower detectors are based on the detection of the Cerenkov light, 
produced by electrons and positrons with kinetic energy larger than  0.7 MeV. 
This means that at most 1000/0.7  1400 independent particles, per GeV of 
deposited energy, produce Cerenkov light. The resolution is then dominated by the 

fluctuation in this number and is ≥ 3% 𝐸 𝐺𝑒𝑉  . This is further limited by 
photo-electron statistic as only about 1000 photo-electrons are generated when 
using photomultipliers to detect the scintillation light. 
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Energy Resolution of Sampling EM 
Calorimeters 

• When the very best energy resolution is not required, sampling calorimeters are employed 

• The shower energy is measured in active layers, often of low 𝑍, sandwiched in between 
passive absorber layers of high 𝑍 material.  

• The energy resolution is dominated by the fluctuations of the shower energy dissipated in 
the active medium (𝜎𝑠) 

• If the energy loss in an active layer is much smaller than that in the absorber layer  the 
number of independent charged particles crossing an active layer can be approximated by 
𝑛 = 𝐸 ∆𝐸𝑎𝑏𝑠  where ∆𝐸𝑎𝑏𝑠is the energy lost by a minimum ionizing particle (m. i. p.) in the 
absorber layer. Now ∆𝐸𝑎𝑏𝑠= 𝑡𝑎𝑏𝑠 × 𝑑𝐸 𝑑𝑥 . Hence 

 

𝜎𝑠𝑡𝑜𝑐
𝐸
=  
𝜎𝑠
𝐸
=
𝑛

𝑛
≈
𝑡𝑎𝑏𝑠

𝐸
 

 

• An empirical valid formula is 

𝜎𝑠
𝐸
≅
4% ∆𝑐𝑒𝑙𝑙 𝑀𝑒𝑉

𝐸 𝐺𝑒𝑉
 

 

         where ∆𝑐𝑒𝑙𝑙  is the m. i. p. energy loss in sampling cell (absorber plus active medium) 
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Energy Response of Hadronic 
Calorimeters 

• Hadronic calorimeters, because of the large depth required ( 10 ) are by necessity sampling 
calorimeters. The response of the calorimeter to electrons can be expressed as 

 
𝐸𝑣𝑖𝑠
𝑒 = 𝑒𝐸 

 
𝐸𝑣𝑖𝑠
𝜋 = 𝑒𝐸𝑒𝑚 + c𝐸𝑐ℎ + 𝑛𝐸𝑛 + 𝑁𝐸𝑁 = 𝑒𝐸𝑒𝑚 + ℎ𝐸ℎ𝑎𝑑 = 𝑒𝐹0 + ℎ 1 − 𝐹0 𝐸  

 

         where 𝐸, 𝐸𝑣𝑖𝑠
𝑒  and 𝐸𝑣𝑖𝑠

𝜋 are incident and visible energies respectively. 𝐸𝑒𝑚 , 𝐸𝑐ℎ and 𝐸𝑁 the 
energy deposited by electromagnetic component and charged hadrons (low energy neutrons and 
energy lost in breaking up nuclei). Each component has its own sampling fraction.  

 

• The sampling fraction 𝑁 is normally very small and 𝐸𝑁 can be large. Hence 𝑒 ℎ  is in general 
larger than 1. 

 

• 𝐹0 is the e.m. component of hadronic shower. In iron 𝐹0 increase from 50% to 70% when the 
energy of the incident pions ranges between 10 and 50 GeV -> response in energy to hadrons 
not linear  
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Energy Response of Hadronic 
Calorimeters (cont) 

• The degree of compensation is expressed 
by the energy independent ratio 𝑒 ℎ  

• It can not be measured directly but can be 
inferred from the energy dependent 
𝐸𝑣𝑖𝑠
𝑒 𝐸𝑣𝑖𝑠

𝜋 = 𝑒 𝜋   signal ratios  

 
𝑒

𝜋
=

𝑒 ℎ 

1 + 𝑒 ℎ − 1 𝐹0
 

 

𝐹0 = 1 − 𝐸[𝐺𝑒𝑉] 0.76 −0.13 D. Groom 

 

or  

 

𝐹0 = 0.11 ln𝐸 [𝐺𝑒𝑉]            R. Wigmans 
 

 

 

 

 

 

          

TileCal result 
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Energy Resolution of Hadronic 
Calorimeters 

• The stochastic term is given by 

 

𝜎𝑠𝑡𝑜𝑐
𝐸
=
𝜎𝑠
𝐸

𝜎𝑖
𝐸 𝑖
=
10% ∆𝐸𝑐𝑒𝑙𝑙

𝐸
 
𝜎𝑐𝑜𝑚𝑝

𝐸
 

 

• The sampling fluctuations for hadrons are 
larger than those for e.m showers by a factor 
of 3 

• The intrinsic resolution 𝑑𝐸 𝐸 𝐶𝑜𝑚𝑝 depends 

on 𝑒 ℎ  and vanishes for a compensating 
calorimeter. 

• The event-to-event fluctuation in 𝐹0 affect the 
energy resolution. The average number of 𝜋0 
‘s in a shower is small and its fluctuations 
large. This number increases as ln 𝐸 𝐺𝑒𝑉  and 

 
𝜎𝑐𝑜𝑚𝑝

𝐸
≈

1

ln𝐸 𝐺𝑒𝑉
 

 
 

 

 

 

Pion Energy Resolution of a copper quartz 
fibre Calorimeters 

Charged particles traversing the fibres 
generate Cerenkov light predominantly 
from the electromagnetic component  
(charged hadrons have a very high 
Cerenkov threshold). 
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A compensation weighting method 
(CDHS) 

To suppress e.m. response a simple algorithm 
reduces the response of individual counters 𝑖 of 
the calorimeter by a fraction proportional to the 
un-weighted response (𝐸𝑖): 

 
𝐸′𝑖 = 𝐸𝑖 1 − 𝐶′𝐸𝑖  

 

• The optimum value for 𝐶′depends on the 
incoming pion energy, 𝐶′ was then  
parameterized  as a function of the total un-
weighted energy 𝐸 to make this procedure 
useful when the hadron energy is not known 
a priori  

 

𝐶′ = 𝐶 𝐸  

 

• The resolution per hadronic showers 
improves by 30% at 140 GeV and by 10% at 
10 GeV 
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The ATLAS Calorimeters 
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The ATLAS TileCal Calorimeter  
• 3 cylinder of 64 modules each spanning 

the azimuth angle =2/640.1. 

• Depth: 7.4  

• The steel plates (4-5 mm) and scintillating 
tiles (3 mm) are perpendicular to the 

beam -> ∆𝐸𝑐𝑒𝑙𝑙  4 MeV and 𝜎𝑠  40% at 

 = 0.35 

• It is not a compensating calorimeter: 

 

 𝑒 ℎ = 1.33 ± 0.07  

 

• Energy resolution: 

 

 
𝜎

𝐸
=
52.9±0.9 %

𝐸
  5.7 ± 0.2 % 

 

– The noise term is negligible 

– The constant term is affected by 
longitudinal containment 
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p beam (z) 



15 

The Monitoring Systems 

• Monitor gain stability by injecting laser light (532 nm) in each of 9836 PMT’s 
(precision: <1%) 

o The PMTs need to operate in a stable way. A change of 1 V in the operating 
voltage gives a 1% variation in gain 

The shower energy is obtained as the sum of the energy measured in each PMTs. Non 
uniformities and instabilities affect the detemination 
 



The Monitoring Systems 

• Cs source (precision: 0.3%) 

o PMT voltage adjustments to inter 
calibrate cells response 

The range of the 0.662 MeV ’s 
emitted by the 𝐶𝑠 source is very 
limited ( 1 cm). The equalization of 
the cell response is achieved using a 
Sr source scan and muons 

   

• Minimum Bias current monitoring 
system 

o It integrates energy to monitor 
the cell response evolution 
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The Monitoring Systems 

• Charge Injection (stability: 0.7%) 

o The charge produced by the PMT’s is digitized by ADC’s. The charge injection 
system using charges stored in capacitors gives correspondence ADC counts-
>pC and electronics linearity. 



Electromagnetic scale (EM) 
• The next step is to relate the pC measured by the PMTs to some “physics” scale to 

compare experimental and simulated results. This was done by exposing a fraction 
of the detector modules to electron at TB’s  

• In ATLAS the HV is set in a way that PMT response  to Cs  is  equal to the one  when 
the EM scale was  measured  at TB taking into account the Cs lifetime  
 
 

Mean=1.05 pC/GeV 
RMS=2.4% 
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Energy reconstructed for each channel 

• AADC  : Amplitude in ADC 

• CLas : Relative variation from Laser system 

• CCs : Relative variation from Cs system 

• C/Sr : Factor due to the different sizes of the cells 

• CCIS : ADCpC convertion factor   

• EM : pC→GeV conversion factor from e’s at TB 

The same energy deposit leads to the same signal at the E.M.  

scale anywhere in the detector 
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E = AADC  CLas  CCs  C/Sr  CCIS  EM 



Cell Response Variation 

 
• Corrections applied to 

the PMT response 
• Down drift due to high 

instantaneous 
luminosity 

• Up drift due to recovery 
during technical stops 

• Radiation effects on the 
scintillating tiles: 2% 
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Performance with single muons 
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• Muon signal in TileCal is well 
separated from noise 

• Cosmic muons can be used to 
cross-check cell energy inter-
calibration and overall EM 
scale  

• Data and MC dE/dx  
comparisons as a function of  
and  show good cell inter-
calibration within one radial 
layer (2%) 

• Stability in the last 3 years: ≤ 
1.5% 

 



Validation of the EM Scale Using Muons  
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• The ratio 𝑅 allows to compare 
the actual value of the EM 
energy scale in ATLAS and the 
value set at  CTB 

 The distributions include 
systematic effects (strongly 
correlated)  

 Difference between barrel 

layer D and all other layers is 
observed (4%) 
 𝑅 =  

𝑑𝐸

𝑑𝑥
𝑑𝑎𝑡𝑎

𝑑𝐸

𝑑𝑥
𝑀𝐶

  



Jets Measurements 

Hadronic calorimeters (depth at  = 0: 1.2   + 7.4 ) are primarily used to measure the energies of jets: 
 

𝐸𝑗𝑒𝑡 = 𝐸𝐸𝑀𝐶
𝑗𝑒𝑡

 +𝐸𝐻𝐴𝐷𝐶
𝑗𝑒𝑡

 

 
→Jet energy linearity, Jet energy resolution, Missing transverse energy resolution 
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Jet Energy Calibration 

• The jet energy 
calibration relates the 
jet energy measured 
with the ATLAS 
calorimeter to the 
energy of the 
corresponding jet of 
stable particles entering 
the ATLAS detector  
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Topological Calorimeter Clusters  

 

• The energy of jets is estimated by 
adding the energy deposited in the 
cell of a cone with half angle 

∆𝑅 = ∆ 2 + ∆ 2 in pseudo-
rapidity, , and azimuth angle  
space and whose axis is centered on 
a seed cell above a pre-defined 
threshold. 

• Jets reconstructed are formed from 
calorimeters energy depositions 
reconstructed at the EM scale  
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EM+JES Calibration Scheme 

𝐸𝑐𝑎𝑙𝑖𝑏
𝑗𝑒𝑡
=

𝐸𝑚𝑒𝑎𝑠
𝑗𝑒𝑡

𝐹𝑐𝑎𝑙𝑖𝑏 𝐸𝑚𝑒𝑎𝑠
𝑗𝑒𝑡

  

with 𝐸𝑚𝑒𝑎𝑠
𝑗𝑒𝑡
= 𝐸𝐸𝑀

𝑗𝑒𝑡
− 𝑂 𝑁𝑃𝑉  

• 𝐸𝐸𝑀
𝑗𝑒𝑡

 is measured at the EM scale  

• 𝑂 𝑁𝑃𝑉  is the pile-up offset 

• 𝐹𝑐𝑎𝑙𝑖𝑏 𝐸𝑚𝑒𝑎𝑠
𝑗𝑒𝑡

 is evaluated in  bins using MC 
jets 
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Average JES corrections 
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Uncertainty on the calorimeter response 

The following single particle response 
measurements were used 

 In situ single hadron energy measured 
in a cone  around an isolated track with 
0.5 ≤ p ≤ 20 GeV/c 

 The pion response measurements 
measured in the 2004 CTB where a full 
slice of the ATLAS detector was 
exposed to pion beams with momenta 
between 20 GeV/c and 350 GeV/c 
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The uncertainty in the calorimeter response was obtained from the response 
uncertainty in the individual particles constituting the jet 



CTB: Resolution of high energy pions 
• The error on the resolution  is equal to  1% for all the energies.  
• The energy resolution in general is narrower in the simulation than in 

the data. 

Energy resolution. Data:  open points and MC: full points  vs. E at  = 0.55 
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CTB: Linearity of high energy pions 

• The response has been determined with un uncertainty of about 
2.5%. 

• The MC is able to reproduce the response to within a few percent.  

Energy response ratio. Data:  open points and MC: full points  vs. E at  = 0.35 
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The EM+JES systematic uncertainty 
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The EM+JES Jet Energy Resolution 
The jet energy resolution is determined by exploiting the transverse 
momentum balance in events containing jets with large transverse 
momenta 
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Beyond the simplistic EM+JES 

• The EM+JES calibration facilitates the evaluation of 
systematic, but the energy resolution is rather poor 
– The contribution of the JES systematic uncertainty on the 

determination of the 𝑚𝑡𝑜𝑝 is 0.79 GeV (The total 
systematic error is 1.35 GeV) 

 

• More sophisticated calibration schemes will be used in 
Run 2 
– Global calorimeter cell energy density calibration (GCW) 

– Local cluster calibration (LCW) 
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