Göttingen, HASCO2014

July 21st, 2014

QCD and jets: experiment

Juan Terrón (Universidad Autónoma de Madrid, Spain)

• Outline

- \rightarrow Jets and Jet Algorithms
- ightarrow Jets in e^+e^- collisions
- \rightarrow Structure Functions
- \rightarrow Jets in Neutral Current DIS
- \rightarrow Jets in Photoproduction

Run:event 4093: 1000 Date 930527 Time 20716 Ctrk(N= 39 Sump= 73.3) Ecal(N= 25 SumE= 32.6) Hcal(N=22 SumE= 22.6) Ebeam 45.658 Evis 99.9 Emiss -8.6 Vtx (-0.07, 0.06, -0.80) Muon(N= 0) Sec Vtx(N= 3) Fdet(N= 0 SumE= 0.0) Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

<u>CDF:</u> Highest Transverse Energy Event from the 1988-89 Collider Run

 $p\bar{p} \rightarrow \text{jet} + \text{jet} + \text{Anything} \quad (p\bar{p} \text{ collision})$

What is a jet (III)?

$ep \rightarrow e + jet + Anything$ (NC DIS)

What is a jet (IV)?

 $ep \rightarrow jet + jet + Anything$ (photoproduction)

What is a jet (VI)?

$pp \rightarrow \text{jet} + \text{jet} + \text{Anything}$

- Studies of the strong interactions:
- \rightarrow measurements of the strong coupling constant (α_S)
- \rightarrow colour dynamics (e.g. the self-coupling of the gluon)

Some good reasons to study jets (III)

How to find jets?

\Rightarrow **JET ALGORITHM**

- \rightarrow MEASURABLE!
- \rightarrow CALCULABLE!
- \rightarrow ACCURATE!
- Jet algorithm:
 - \rightarrow Reference frame
 - \rightarrow Variables of the hadron
 - \rightarrow Combining hadrons

- e^+e^- annihilations in the centre-of-mass system
- Invariance under rotations \Rightarrow Energies and angles
- \Rightarrow Input to the jet algorithm: E_i , θ_i and ϕ_i for every hadron i

 \Rightarrow "distance" between hadrons *i* and *j*: their angular separation θ_{ij}

14

Combining the hadrons to build up jets: cluster algorithms

- Hadrons are combined iteratively according to their "distance"
- Usually a binary decision
- Two-step procedure:
 - \rightarrow decision about combining hadrons *i* and *j* based on d_{ij} \rightarrow momentum of the combined pseudo-particle (*ij*) (recombination procedure)

- They have a long and successful history in e^+e^- annihilations
- The JADE algorithm has been the standard
 - \rightarrow distance definition: $d_{ij}^2 = 2E_iE_j(1 \cos\theta_{ij})$
 - \rightarrow recombination procedure: $p_{(ij)} \equiv p_i + p_j$

Combining the hadrons to build up jets: cone algorithms

- Maximizing the total transverse energy of the hadrons within a cone of fixed size
- Three-step procedure:
 - → constructing the seeds
 (starting positions for the cone)
 - → moving the cone around until a stable position is found
 - → dealing with overlapping cones (to merge or not to merge)

- ullet They have been applied mainly to $par{p}$ collisions
- The iterative cone algorithm has been the standard
 - \rightarrow distance definition: $d_{iJ} \equiv \sqrt{(\eta_i \eta_J)^2 + (\phi_i \phi_J)^2}$
 - \rightarrow cone axis: $\eta_J \equiv \frac{1}{E_T} \sum_i E_{T,i} \cdot \eta_i$, $\phi_J \equiv \frac{1}{E_T} \sum_i E_{T,i} \cdot \phi_i$, $E_T = \sum_i E_{t,i}$

17

Fulfilling the requirements

 \rightarrow <u>First situation</u>: two particles (partons) with equal and exposite moments

with equal and opposite momenta

$$d_{12}^2 = 4E_1(\bar{q})E_2(q) = s_{cm}$$

For $d_{cut}^2 < s_{cm} \Rightarrow$ Two jets

 \rightarrow <u>Second situation</u>: three particles (partons) \bar{q}

the two collinear partons will be combined

 $d_{2'3'}^2 = 2E_2'(q)E_3'(g)(1-\cos 0) = 0 \, !!$

 $p_{(2'3')} = p'_2 + p'_3 = p_2 !!$ (it wouldn't be the case if the *p* were added quadratically) $d^2_{1(2'3')} = 4E_1(\bar{q})E_{(2'3')}(qg) = s_{cm}$ and for $d^2_{cut} < s_{cm} \Rightarrow$ Two jets

q

 \rightarrow <u>Third situation</u>: the soft gluon will be combined with the closest (in angle) quark

e.g.
$$d_{2'3'}^2 = 2E'_2(q)E'_3(g)(1 - \cos\theta_{2'3'}) < 2E_1(\bar{q})E'_3(g)(1 - \cos\theta_{13'})$$

 $p_{(2'3')} = p'_2 + p'_3 = p_2 !!$

$$d_{1(2'3')}^2 = 4E_1(\bar{q})E_{(2'3')}(qg) = s_{cm} \text{ and for } d_{cut}^2 < s_{cm} \Rightarrow \text{Two jets}$$

• The final result is the same in each configuration!

soft-gluon radiation

Fulfilling the requirements (II)

- The cone algorithm is infrared and collinear safe at NLO
- → <u>First situation</u>: two particles (partons) with equal and opposite momenta Each of them defines a cone ⇒ Two jets
- $\rightarrow \underline{\text{Second situation}}: \text{ three particles (partons)}$ the two collinear partons will lie in the same cone $\Rightarrow \underline{\text{Two jets}}$
- \rightarrow <u>Third situation</u>: if the soft gluon is far from the other partons ($\sqrt{\Delta \eta^2 + \Delta \phi^2} > R$) it won't be lumped with any of them

\Rightarrow Two jets

The jet axes and transverse energies will differ from the the values found in the 1st or 2nd situation by a quantity that $\rightarrow 0$ as $E(g) \rightarrow 0$!

• The final result is the same in each configuration!

soft-gluon radiation (divergence!)

g (soft)

collinear splitting

(divergence!)

q

q

Jets in e^+e^- collisions

Observation of jets in e^+e^- collisions

- First evidence for jets arising from quarks in $e^+e^- \rightarrow q\bar{q}$ events was obtained at the SPEAR e^+e^- collider in 1975
- Since jets could not be discerned simply by looking at the pattern of outgoing tracks, a method to define the jet axis was devised: the direction in which the sum of the squares of the momenta transverse to the axis was minimal:

 $\rightarrow S = \frac{3\sum_{i} p_{\perp i}^{2}}{2\sum_{i} p_{i}^{2}} \text{ (sphericity)} \quad \begin{array}{l} \rightarrow \text{ jet-like event:} \quad S = 0 \\ \rightarrow \text{ isotropic event:} \quad S \approx 1 \end{array}$

• $p_{\perp i}$: momentum of the *i*th particle perpendicular to the sphericity axis

- QCD predicts that as the cms energy increases, the events should become more jet-like so the sphericity should decrease
- Comparison to isotropic phasespace (PS) and jet models:
 - \rightarrow both models are consistent with the data for $\sqrt{s}=3.0~{\rm GeV}$
 - → for $\sqrt{s} = 6.2$ and 7.4 GeV, the data are peaked toward low S and have significantly lower mean S than the PS model and agree with the jet model

Observation of jets in e^+e^- collisions

• The quark spin can also be inferred from the angular distribution of the thrust axis in hadronic Z decays \rightarrow the angular distribution has the form

- Comparison to the predictions
 - \rightarrow the spin-0 curve is clearly incompatible the data
 - \rightarrow the spin-1/2 curve is in excellent agreement with the measurements
 - \Rightarrow Confirmation that quarks are fermions with spin 1/2

Observation of gluon jets in e^+e^- **collisions**

- In e^+e^- , gluons first appear as the $\mathcal{O}(\alpha_s)$ correction to the $e^+e^- \rightarrow q\bar{q}$ process
- First observation of three-jet events in $e^+e^- \rightarrow q\bar{q}g$ at the PETRA e^+e^- collider in 1979 \rightarrow direct evidence for the existence of gluons by looking for deviations from the quark-parton model predictions

- The quark-parton model for the process $e^+e^- \to q\bar{q}$ predicts back-to-back jets of hadrons with typical transverse momentum of $\sim 0.3~{\rm GeV}$
- In QCD,
 - → gluons will be radiated from the quarks and so the jets will no longer be back-to-back
 - \rightarrow the p_T distribution of the final-state hadrons will broaden with increasing energy
 - \rightarrow the $q\bar{q}g$ state must be coplanar since the momenta should sum 0 by momentum conservation
 - → the final-state hadrons will have small transverse momentum wrt the plane and large transverse momentum in the plane
 - → if the gluon is radiated with a large transverse momentum, the events will have a three-jet topology

Observation of gluon jets in e^+e^- collisions

- Two methods were used to determine the jet axis from the final-state hadrons:
 - ightarrow minimising $\sum p_T^2$ (sphericity axis)
 - ightarrow maximising $\sum | \vec{p}_{\parallel} |$ (thrust axis)
- Normalised transverse momentum distribution $\sigma^{-1}d\sigma/dp_T^2$ evaluated wrt the sphericity axis as a function of p_T^2 at $\sqrt{s} = 13 - 17$ and 24.7 - 31.6 GeV:
 - \rightarrow the data at both energies are in reasonable agreement for $p_T^2 < 0.2~{\rm GeV^2}$
 - \rightarrow the high-energy data are well above the low energy data is for $p_T^2>0.2~{\rm GeV}^2$
- The low-energy data have been fitted for $p_T^2 < 1.0 \ {\rm GeV}^2$ with the jet model: the value of the parameter σ_q (it determines the width of the p_T distribution) obtained was $0.30 \ {\rm GeV}$
- For the high-energy data, $\sigma_q = 0.45$ GeV in contradiction with the quark-parton model which assumes the quark to fragment into hadrons with an energy-independent p_T distribution
- \bullet QCD predicts the p_T to increase with the energy due to gluon bremsstrahlung

Observation of gluon jets in e^+e^- **collisions**

 $\langle p_T^2 \rangle_{\text{out}} = \frac{1}{N} \sum_{j=1}^N (\vec{p}_j \cdot \vec{n}_1)^2$ (momentum component normal to the event plane) $\langle p_T^2 \rangle_{\text{in}} = \frac{1}{N} \sum_{j=1}^N (\vec{p}_j \cdot \vec{n}_2)^2$ (momentum component in the event plane perpendicular to the jet axis)

where \vec{n}_3 : direction of sphericity axis, \vec{n}_1 : direction which maximises $\sum p_T^2$, \vec{n}_2 : direction orthogonal to \vec{n}_1 and \vec{n}_3 $\rightarrow \vec{n}_2 - \vec{n}_3$: event plane

- \rightarrow the data show only little increase in $\langle p_T^2 \rangle_{\rm out}$ between the low-energy and the high-energy data
- \rightarrow the distribution of $\langle p_T^2 \rangle_{\rm in}$ becomes much wider at high energies and a long tail is observed
- Comparison to the jet-model predictions:
 - \rightarrow hadrons resulting from pure $q\bar{q}$ events will be on average distributed uniformly around the jet axis
 - \to fair agreement with the $qar{q}$ model is found both for $\langle p_T^2
 angle_{
 m in}$ and $\langle p_T^2
 angle_{
 m out}$ for the low-energy data
 - ightarrow at high energy, there is a fair agreement between $\langle p_T^2
 angle_{
 m out}$ and the q ar q model with $\sigma_q = 0.3$ GeV
 - \to the long tail in $\langle p_T^2 \rangle_{
 m in}$ is not reproduced by the model \to this discrepancy cannot be removed by increasing σ_q

 \Rightarrow the data include a number of planar events not reproduced by the $qar{q}$ model

ightarrow evidence for qar qg events

Jet rates in e^+e^- collisions

- The topology of hadronic events in e^+e^- collisions is modified by the effects of gluon radiation, giving rise to events which differ from the collimated two-jet topology coming from the fragmentation of $q\bar{q}$ events
- Since the amount of gluon radiation is directly proportional to α_s , the study of the topology of hadronic decays in e^+e^- provides a determination of $\alpha_s(M_Z)$
- The strategy consists of finding variables which characterize the "three-jetness" of the events \rightarrow the variables have to be infrared and collinear safe to be able to perform reliable calculations: jet rates as a function of the resolution parameter $y_{\rm cut}$
- Comparison to Monte Carlo predictions:
 - → the predictions show in general a good agreement with the data
- The three-jet rate (R_3) at $y_{
 m cut}=0.08$ as a function of \sqrt{s} shows the running of α_s directly

Theoretical Uncertainties

- Being collinear and infrared safe does NOT mean small theoretical uncertainties
- Perturbative QCD calculations are performed to a certain order in α_S
- LOWEST ORDER
 - \rightarrow the size of higher-order contributions constrains the accuracy with which (e.g.) α_S can be experimentally determined
- The size of the higher-order contributions DEPENDS on the jet algorithm
- How can higher-order effects be estimated without computing them?
 - \rightarrow by investigating the renormalisation-scale dependence (μ_R)
 - $A = A_1 \cdot \alpha_S(\mu_R) + A_2 \cdot \alpha_S^2(\mu_R) + \dots$ (higher orders)
 - At all orders A does NOT depend on μ_R
 - \Rightarrow The size of the "..." is such that it cancels the μ_R variation of the first two terms

Theoretical Uncertainties (II)

- NLO calculations for three-jet production in e⁺e⁻: → variation with μ_R to asses the size of higher-order contributions
 → Performance of various jet algorithms: variation of the observable f₃ over the range 0.1 < μ_R/M_Z < 1.0

 - \bullet JADE algorithm: 15%
 - Durham algorithm: 8%
 - Geneva algorithm: 3%
- The Durham and Geneva jet algorithms were specifically designed for the purpose of reducing the higher-order contributions upon identifying the limitations of the JADE algorithm

Improving the jet algorithm

- The limitation of the JADE algorithm:
 - \rightarrow soft gluons are copiously radiated
 - → but soft gluons far apart can be combined into and a "phantom" jet

• This peculiar behaviour arises from the definition of "distance" in the JADE algorithm:

$$\left| d_{ij}^2 = 2E_i E_j (1 - \cos \theta_{ij}) \right| \Rightarrow$$
 two soft gluons can be very close " $d_{gg} \ll d_{gq}$ "

• An improved definition of the distance:

 $d_{ij}^2 = 2 \cdot min(E_i^2, E_j^2) \cdot (1 - \cos \theta_{ij})$

which amounts to replacing the invariant mass

- ightarrow by the minimum relative k_T of the pair
- \Rightarrow Durham (or k_T) algorithm
 - \rightarrow it also allows the resummation of

contributions from multiple-soft-gluon emissions

E

Hadronisation Effects

- Being collinear and infrared safe does NOT mean small hadronisation uncertainties
- Parton-to-Hadron (hadronisation) effects are non-perturbative and are estimated with Monte Carlo simulations that include
 - \rightarrow q and g radiation in the parton-shower approach
 - \rightarrow fragmentation of the final-state partons into hadrons
- The size of the hadronisation effects DEPENDS on the jet algorithm
- They are estimated by comparing the results of applying the jet algorithm to the parton and hadron levels of the Monte Carlo simulated events

Hadronisation Effects (II)

- Jet rates in e^+e^- annihilations as functions of the resolution parameter y_{cut}
- Comparison of hadron and parton level calculations using Monte Carlo simulations
- The size of the hadronisation effects depends upon
 - ightarrow the distance definition
 - \rightarrow the recombination procedure
- The hadronisation effects are LARGEST for
 - \rightarrow the JADE algorithm with the E scheme
 - $(p_{ij} = p_i + p_j)$
 - \rightarrow the Geneva algorithm
- The hadronisation effects are SMALLEST for
 - \rightarrow the JADE algorithm with the E0 scheme

$$(E_{ij} = E_i + E_j, \ \vec{p}_{ij} = \frac{E_{ij}}{|\vec{p}_i + \vec{p}_j|} (\vec{p}_i + \vec{p}_j|))$$

 \rightarrow the Durham algorithm

Importance of the details of the jet algorithms

- The "details" of a jet algorithm are RELEVANT for
 - \rightarrow precise comparisons between DATA and THEORY to make accurate determinations of the fundamental parameters (e.g. $\alpha_S(M_Z)$)
 - \rightarrow precise identification and reconstruction of new heavy particles
- The decision on which algorithm to choose must be based on the size of the uncertainties
 - \rightarrow higher-order contributions
 - \rightarrow hadronisation corrections
 - \rightarrow hadronisation uncertainties
 - \rightarrow experimental uncertainties

Determination of $lpha_s(M_Z)$ in e^+e^- collisions

• The QCD prediction for the differential two-jet rate as a function of the two-jet resolution parameter y_3 is given by

$$rac{1}{\sigma}rac{d\sigma}{dy_3}=rac{lpha_s(\mu)}{2\pi}A(y_3)+\left(rac{lpha_s(\mu)}{2\pi}
ight)^2\cdot\left[B(y_3)+2\pi b_0\ln\left(rac{\mu^2}{s}
ight)\cdot A(y_3)
ight]$$

where $A(y_3)$ and $B(y_3)$ contain the full information of the second order matrix elements, μ : renormalisation scale

- Since the predictions correspond to a partonic final state with at most four partons → need to apply hadronisation corrections
- A value of $lpha_s(M_Z)$ of

 $\alpha_s(M_Z) = 0.121 \pm 0.002 \text{ (stat)} \pm 0.003 \text{ (exp.)} \pm 0.007 \text{ (th.)}$

was obtained by fitting the measured differential two-jet rate distribution using the second order QCD prediction corrected for hadronisation effects

Determination of the spin of the gluon in e^+e^- collisions

- A study of three-jet events in e^+e^- collisions gives insight into the dynamics of perturbative QCD \rightarrow three-jet events arise from hard non-collinear gluon radiation
- For massless jets, there are only four independent variables: two angular variables and two of the energy fractions, $x_i = 2E_i/\sqrt{s}$ since $x_1 + x_2 + x_3 = 2$ by energy conservation ($x_1 > x_2 > x_3$)

Triple-gluon vertex

- QCD is based on the SU(3) non-abelian group which induces the self-coupling of the gauge bosons whereas QED is based on the abelian U(1) group (no self-coupling)
- \rightarrow Due to the presence of the gluon self-coupling, the effects of the triple-gluon vertex should be observed
- \rightarrow The events should contain at least four jets in the final state
- Events with at least four jets are needed since the diagrams that contain the triple-gluon vertex are

• The diagrams

also contribute to the four-jet cross section, but they are present in abelian theories as well

Four-jet events in e^+e^- : triple-gluon vertex

- \bullet Four-jet events have been observed at the e^+e^- collider LEP
- → QCD prediction confirmed by data!
- The four-jet cross sections for $e^+e^- \rightarrow q\bar{q}gg$ and $e^+e^- \rightarrow q\bar{q}q\bar{q}$ can be expressed as $\frac{1}{\sigma_0} d\sigma_{q\bar{q}gg}(y_{ij}) = \left(\frac{\alpha_s C_F}{\pi}\right)^2 \left[A(y_{ij}) + \left(1 - \frac{1}{2}\frac{C_A}{C_F}\right)B(y_{ij}) + \frac{C_A}{C_F}C(y_{ij})\right]dY_{ij}$ $\frac{1}{\sigma_0} d\sigma_{q\bar{q}q\bar{q}}(y_{ij}) = \left(\frac{\alpha_s C_F}{\pi}\right)^2 \left[N_F \frac{T_F}{C_F}D(y_{ij}) + \left(1 - \frac{1}{2}\frac{C_A}{C_F}\right)E(y_{ij})\right]dY_{ij}$

where

 $\rightarrow y_{ij} = (p_i + p_j)^{\mu} (p_i + p_j)_{\mu} / s$ is the normalised two-body invariant mass and i, j run over the four partons

- $ightarrow C_A,\, C_F$ and T_F are the color factors
- $ightarrow N_F$ is the number of active quark flavors
- ightarrow A,...,E are group-independent kinematic functions
- $ightarrow \sigma_0$ is the Born cross section for the process $e^+e^-
 ightarrow qar q$
- $ightarrow dY_{ij}$ is the product of the differentials of any five of the six y_{ij} variables

Four-jet events in e^+e^- : triple-gluon vertex

- Variables have been devised to highlight the non- abelian character of QCD in contrast to abelian theories, eg the SU(3) group of QCD could be replaced by the abelian $[U(1)]^3$ group
- These variables are
 - \rightarrow Bengtsson-Zerwas angle χ_{BZ} , the angle between the planes determined by the two lowest and the two highest energy jets:

$$\cos \chi_{BZ} = \left| \frac{(\vec{p_1} \times \vec{p_2}) \cdot (\vec{p_3} \times \vec{p_4})}{|\vec{p_1} \times \vec{p_2}| |\vec{p_3} \times \vec{p_4}|} \right|$$

 \rightarrow Nachtmann-Reiter angle θ_{NR}^* , the angle between the momentum vector differences of jets 1,2 and jets 3,4:

$$|\cos heta_{NR}^*| = \left| rac{(\vec{p_1} - \vec{p_2}) \cdot (\vec{p_3} - \vec{p_4})}{|\vec{p_1} - \vec{p_2}| \, |\vec{p_3} - \vec{p_4}|}
ight|$$

 $ightarrow lpha_{34}$, the angle between the two lowest energy jets:

$$\coslpha_{34} = rac{ec{p}_3 \cdot ec{p}_4}{|ec{p}_3| \, |ec{p}_4|}$$

Do the data favour an abelian or a non-abelian theory?

• These variables have been measured in four-jet events at LEP, eg

Four-jet events in e^+e^- : color factors

• A simultaneous measurement of the ratios C_A/C_F and T_F/C_F at $e^+e^$ colliders is possible through the study of angular correlations in four-jet events: the values are extracted from a fit of the theory to the data distributions on the angular variables abelian U(1)³ OPAL

Fr/Cr

2

1

0

G SO(2)

- 🗇 U(1)

n

→ The results obtained are

 $C_A/C_F = 2.11 \pm 0.16 \text{ (stat)} \pm 0.28 \text{ (syst)}$ $T_F/C_F = 0.40 \pm 0.11 \text{ (stat)} \pm 0.14 \text{ (syst)}$

 $\frac{\left|\left|\left|\left|\left|\left|\left|\left|\left|\right|\right|^{2} \sim \alpha_{s} C_{r}\right|\right|\right|^{2} - \alpha_{s} C_{r}\right|}{\left|\left|\left|\left|\left|\left|\left|\left|\right|\right|\right|\right|\right|^{2} - \alpha_{s} C_{r}\right|\right|\right|\right|^{2} - \alpha_{s} C_{r}} \quad For \ SU(N_{C}) \to C_{A} = N_{C}$ $C_{F} = \frac{N_{C}^{2} - N_{C}^{2}}{2N_{c}}$ $C_F=rac{N_C^2-1}{2N_C}$ $T_{F} = 1/2$

- The $U(1)^3$ and SO(3) theories are clearly excluded by the measurements
- The results are in agreement with the predictions of the SU(3) theory (QCD)

68% C.L.

95% C.L.

Sp(2N)

 C_A/C_F

2

SU(3) (QCD)

SU(2), Sp(2)

SU(N)

Sp(4)

Sp(6)

SO(3)

SO(3). E8

SU(4)

SO(4)

E7 0

SO(N)

SO(5), F4

Structure Functions

Universality (and usefulness) of Proton PDFs

$$\sigma_{pp \to H(W,Z,...)+X} = \sum_{a,b} \int_0^1 dx_1 f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 f_{b/p}(x_2,\mu_F^2) \hat{\sigma}_{ab \to H(W,Z,...)}$$

J Terrón (Madrid)

Göttingen, HASCO2014

Kinematics of Neutral Current Deep Inelastic Scattering

Neutral Current Deep Inelastic Scattering

• Neutral Current DIS event candidate $Q^2 \sim 24000~{ m GeV}^2$ and $x_{Bj} \sim 0.5$

• Coverage of kinematic plane (Q^2, x_{Bj})

J Terrón (Madrid)

Neutral Current Deep Inelastic Scattering

• Inclusive process $e^{\pm}p \rightarrow e^{\pm} + X$ $\frac{d\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left(\begin{array}{c} Y_+ \cdot F_2(x,Q^2) - y^2 \cdot F_L(x,Q^2) \mp Y_- \cdot xF_3(x,Q^2) \\ \hline Dominant & \underline{\text{High } y} \\ \hline Where \ Y_{\pm} = 1 \pm (1-y)^2 \text{ and } y = Q^2/(sx) \text{ (inelasticity parameter)} \end{array} \right)$

- Structure functions of the proton (F_2, F_L, F_3) and QCD
 - $ightarrow F_2 \sim x \sum_i e_i^2 \cdot (q_i(x,Q^2) + ar q_i(x,Q^2))$ for $Q^2 \ll M_Z^2$
 - \rightarrow the longitudinal structure function $F_L = 0$ in the quark-parton model \rightarrow parity-violating term F_3 is small for $Q^2 \ll M_Z^2$

Göttingen, HASCO2014

Determination of the Parton Distribution Functions in the Proton

- In order to determine the proton PDFs additional experimental information is needed on
 - \rightarrow quark densities at high x
 - \rightarrow flavour composition of the sea
- Additional data sets
 - \rightarrow F_2 data on μp scattering from BCDMS, NMC and E665 \Rightarrow mid/high-x
 - ightarrow Deuterium-target data from NMC and E665 \Rightarrow $ar{u}, ar{d}$
 - \rightarrow NMC data on the ratio $F_2^D/F_2^p \Rightarrow$ high-x d/u
 - $\rightarrow xF_3$ data from CCFR (ν -Fe interactions) \Rightarrow high-x

• Global analysis using DGLAP evolution equations at next-to-leading order (NLO) in α_s $\frac{\partial q_i(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} \left(\sum_j P_{q_iq_j} \cdot q_j(x/z,\mu^2) + P_{q_ig} \cdot g(x/z,\mu^2) \right)$ $\frac{\partial g(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} \left(\sum_j P_{gq_j} \cdot q_j(x/z,\mu^2) + P_{gg} \cdot g(x/z,\mu^2) \right)$

The DGLAP equations yield the proton PDFs at any value of Q^2 provided they are input as functions of x at some input scale Q_0^2

 \rightarrow number sum rules and the momentum sum rule are imposed

Determination of the Parton Distribution Functions in the Proton

J Terrón (Madrid)

Göttingen, HASCO2014

Determination of the Sea Distribution

• The total sea distribution $xS(x,Q^2)$ as a function of x for different Q^2 values \Rightarrow

 \bullet Its uncertainty is below $\sim 5\%$ for $Q^2>2.5~{\rm GeV}^{2^{0.25}}_{-0.25}$ and $10^{-4}< x<0.1$

Determination of the Gluon Distribution

- The gluon distribution $xg(x, Q^2)$ as a function of x for different Q^2 values \Rightarrow
- \bullet Its uncertainty is $\sim 10\%$ for $Q^2 \sim 20~{\rm GeV^2}$ and $10^{-4} < x < 0.1$
 - \rightarrow the uncertainty decreases as Q^2 increases

Determination of α_s

Inclusion of low-x data allows a simultaneous (and precise) determination of PDFs and α_s: α_s(M_Z) = 0.1166 ± 0.0008(uncorr) ±0.0032(corr) ± 0.0036(norm) ±0.0018(model) ⇒ 0.1166 ± 0.0052
(+theor. unc. due to terms beyond NLO ~ ±0.004)
Consistent with world average (Bethke, 2011): → α_s(M_Z) = 0.1184 ± 0.0007

Universality (and usefulness) of Proton PDFs

$$\sigma_{pp \to H(W,Z,...)+X} = \sum_{a,b} \int_0^1 dx_1 f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 f_{b/p}(x_2,\mu_F^2) \hat{\sigma}_{ab \to H(W,Z,...)}$$

J Terrón (Madrid)

Göttingen, HASCO2014

Structure Functions (II)

Charged Current Deep Inelastic Scattering

• Charged Current DIS event candidate $Q^2 \sim 1200~{ m GeV}^2$ and $x_{Bj} \sim 0.06$

J Terrón (Madrid)

Charged Current Deep Inelastic Scattering

Göttingen, HASCO2014

Neutral Current Deep Inelastic Scattering

Neutral vs Charged Current Deep Inelastic Scattering

Charged Current Deep Inelastic e^+p Scattering

• Measurement of the reduced cross section in CC DIS:

$$\begin{split} & ilde{\sigma}(e^+p) = (G_F^2\eta_W^2/2\pi x)^{-1}d\sigma_{\mathrm{Born}}/dxdQ^2 \ & o \ \mathrm{Sensitivity \ to \ flavour \ composition} & \circ \ & \tilde{\sigma}(e^+p) = x(\bar{u} + \bar{c} + (1-y)^2(d+s)) & \uparrow \ & o \ \mathrm{Sensitivity \ to \ valence \ quarks} \ & \tilde{\sigma}(e^+p) o x(1-y)^2d_V \ (\mathrm{high-}x) & \uparrow \ & \Lambda \ &$$

- Good description by SM predictions based on CTEQ6 parametrizations of PDFs _____
- \rightarrow valence quarks and flavour composition determined from fixed-target data

HERA e⁺p Charged Current

Charged Current Deep Inelastic e^-p Scattering

- Measurement of the reduced cross section in CC DIS:
- $$\begin{split} & ilde{\sigma}(e^-p) = (G_F^2\eta_W^2/2\pi x)^{-1}d\sigma_{\mathrm{Born}}/dxdQ^2 \ & o \ \mathrm{Sensitivity \ to \ flavour \ composition} & \circ \ & \tilde{\sigma}(e^-p) = x(u+c+(1-y)^2(ar{d}+ar{s})) \ & o \ \mathrm{Sensitivity \ to \ valence \ quarks} \ & ilde{\sigma}(e^-p) o xu_V \ (\mathrm{high}-x) \end{split}$$
- Good description by SM predictions based on CTEQ6 parametrizations of PDFs
- \rightarrow valence quarks and flavour composition determined from fixed-target data

HERA e⁻p Charged Current

Determination of the Proton PDFs with ZEUS data alone

Fit of ZEUS-only data: NC DIS e[±]p and CC DIS e[±]p in the region 2.5 < Q² < 30000 GeV², 6.3 · 10⁻⁵ < x < 0.65 and W² > 20 GeV² using DGLAP evolution equations at NLO: → xu_V, xd_V, xS, xg (no HERA information on flavour composition of the sea: flavour-averaged sea)
⇒ Good description of Structure Function data (577 data points)

Göttingen, HASCO2014

Jets in NC DIS

Jet Production in Neutral Current Deep Inelastic Scattering

• Perturbative QCD calculations of jet cross sections:

$$\sigma_{jet} = \sum_{a=q,ar{q},g}\int dx\, f_a(x,\mu_F^2)\, \hat{\sigma}_a(x,lpha_s(\mu_R),\mu_R^2,\mu_F^2)$$

- $-f_a$: parton *a* density in the proton, determined from experiment; long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD; short-distance structure of the interaction

Jet Production in Neutral Current Deep Inelastic Scattering

- In the region where the wealth of data from fixed-target and collider experiments has allowed an accurate determination of the proton PDFs, measurements of jet production in NC DIS provide
 - \rightarrow a sensitive test of the pQCD predictions of the short-distance structure
 - ightarrow a determination of the strong coupling constant $lpha_s$
- To perform a stringent test of the pQCD predictions and a precise determination of α_s :
 - * Observables for which the predictions are directly proportional to α_s
 - \rightarrow Jet cross sections in the Breit frame
 - * Small experimental uncertainties \rightarrow Jets with relatively high transverse energy
 - * Small theoretical uncertainties \rightarrow NLO QCD calculations
 - \rightarrow Jet algorithm: longitudinally invariant k_T cluster algorithm (Catani et al)
 - (small parton-to-hadron effects, infrared safe, suppression of beam-remnant jet)
 - \rightarrow Jet selection criteria

High- E_T **Jet Production in the Breit Frame**

- In the Breit frame the virtual boson collides head-on with the proton
- High- E_T jet production in the Breit frame
 - \rightarrow suppression of the Born contribution (struck quark has zero $E_T)$
 - \rightarrow suppression of the beam-remnant jet (zero E_T)
 - \rightarrow lowest-order non-trivial contributions from $\gamma^*g \rightarrow q\bar{q}$ and $\gamma^*q \rightarrow qg$
 - \Rightarrow directly sensitive to hard QCD processes (α_s)

- e^+e^- annihilations in the centre-of-mass system
- Invariance under rotations \Rightarrow Energies and angles
- \Rightarrow Input to the jet algorithm: E_i , θ_i and ϕ_i for every hadron i

 \Rightarrow "distance" between hadrons *i* and *j*: their angular separation θ_{ij}

66

- $p \bar{p}$ collisions in the centre-of-mass system
- However the initial-state parton-parton system is NOT at rest!

depending upon the momentum fractions, x_p and $x_{\bar{p}}$, wrt the parent hadrons

 \Rightarrow the final-state partonic system is BOOSTED along the beam axis

67

Variables for Jet Search in $p\bar{p}$ collisions (II)

- Angular separations are NOT invariant under boosts!
- \Rightarrow a given set of hadrons will be appear more collimated depending upon the boost
- To treat on equal footing all possible final-state hadronic systems

invariance under longitudinal boosts \Rightarrow transverse energy, pseudorapidity^{*} and azimuthal angle

- The use of transverse energies helps to disentangle between the products of the hard interaction and the beam remnant jets (absent in e^+e^- annihilations)
- \Rightarrow Input to the jet algorithm: $E_{T,i}$, η_i and ϕ_i for every hadron i

 \Rightarrow "distance" between hadrons *i* and *j*: $\sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}$

69

- The kinematics of ep collisions at high Q^2 poses several challenges:
- \rightarrow Presence of beam remnant jet
- \rightarrow the initial-state γ^* -parton system is boosted (the parton carries a fraction of the proton's momentum) and rotated (the γ^* carries P_T)

Variables for Jet Search in ep collisions at high Q^2 (II)

• The effect of the P_T carried by the γ^* is removed \rightarrow by selecting a frame in which

the γ^* collides head-on with the proton (the Breit frame is one example)

• The γ^* -parton system can still have a longitudinal boost: invariance under longitudinal boosts demands \rightarrow the use of transverse energies, pseudorapidities* and azimuthal angles

hadrons e+q photon p q

• The use of transverse energies helps to suppress the effects of the beam remnant jet

 \Rightarrow Input to the jet algorithm: $E_{T,i}^B$, η_i^B and ϕ_i^B in the Breit frame for every hadron i

 \Rightarrow "distance" between hadrons *i* and *j*: $\sqrt{(\Delta \eta_{ij}^B)^2 + (\Delta \phi_{ij}^B)^2}$ in the Breit frame

The best choice for jet algorithm in ep collisions

- There is no best choice since, at the end, it is a question of having the smallest uncertainty for the given observable:
 - \rightarrow the smallest theoretical uncertainties (higher-order contributions)
 - \rightarrow the smallest hadronisation effects
 - \rightarrow the smallest experimental uncertainties
- At present, the longitudinally invariant k_T algorithm is a good choice for accurate comparisons between data and perturbative QCD at HERA
 - \rightarrow jet cross sections in neutral current DIS
 - \rightarrow jet cross sections in photoproduction
- Performance of the longitudinally invariant k_T algorithm in ZEUS:
 - \rightarrow small higher-order contributions (5%, 10 20%; varying μ_R by factors 0.5 and 2)
 - \rightarrow small hadronisation corrections (< 10%, < 10%; comparing hadron/parton levels)
 - \rightarrow small hadronisation uncertainties (1%, 2 3%; comparing two MC models)
 - \rightarrow small experimental uncertainties (3%, 4%; comparing two MC models)
The longitudinally invariant k_T algorithm for ep collisions

- The clustering procedure is as follows:
 - \rightarrow List of particles (or calorimeter cells, . . .)
 - \rightarrow For every object k and for every pair of objects i, j the "distances" are evaluated

 $d_k^2 = E_{T,k}^2$ (distance to the beam)

$$d_{ij}^2 = \min(E_{T,i}^2, E_{T,j}^2) \cdot ((\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2)$$

 \rightarrow If, of all the values $\{d_k^2, d_{ij}^2\}, d_{mn}^2$ is the smallest, then objects m and n are combined into a single new object according to

 $E_{T,ij} = E_{T,i} + E_{T,j}, \quad \eta_{ij} = \frac{E_{T,i} \cdot \eta_i + E_{T,j} \cdot \eta_j}{E_{T,ij}}, \quad \phi_{ij} = \frac{E_{T,i} \cdot \phi_i + E_{T,j} \cdot \phi_j}{E_{T,ij}}$ \rightarrow If, however, d_k^2 is the smallest, then object k is considered a "protojet" and is removed from the list

- \rightarrow The procedure is iterated until the list of objects is empty
- From the list of "protojets" the jets are selected by imposing certain criteria:
 - ightarrow jet pseudorapidity in the range $C_L < \eta_{
 m jet} < C_U$
 - ightarrow jet transverse energy in the range $E_{T, {
 m jet}} > E_{T, 0}$

 \Rightarrow the lower the $E_{T,0}$ is the larger the theoretical and experimental uncertainties are!

The longitudinally invariant k_T algorithm for NC DIS

- Infrared and collinear safe to all orders in perturbative QCD
- Invariant under longitudinal boosts (along the γ^* -proton axis)
- Suppression of beam remnant jet contributions through the use of transverse energies and by not forcing all the particles to be assigned to jets (nor requiring a certain jet shape)
- Small experimental and theoretical uncertainties

Dijet Cross Sections in NC DIS (5 < Q^2 < 15000 GeV²)

• Measurement of differential dijet cross sections over a wide range in $Q^2 \rightarrow 5 < Q^2 < 15000 \text{ GeV}^2$ and 0.2 < y < 0.6 for dijet production with $E_T^{jet,1(2)}(\text{Breit}) > 5 \text{ GeV}$ $E_T^{jet,1}(\text{Breit}) + E_T^{jet,2}(\text{Breit}) > 17 \text{ GeV}$ $-1 < \eta^{jet,1(2)}(\text{Lab}) < 2.5$

- Detailed investigation of the jet algorithms:
- ightarrow Smallest parton-to-hadron effects: inclusive k_T
- Comparison with NLO QCD calculations:

$$ightarrow \mu_R = ar{E}_T, \mu_F = \sqrt{200}~{
m GeV}$$

J Terrón (Madrid)

- \rightarrow CTEQ5M1 parametrisations of proton PDFs
- \rightarrow parton-to-hadron corrections applied
- NLO QCD gives a good description of the data over

a wide range in Q^2 and E_T ; the Q^2 dependence is

observed to be reduced at high- E_T and described by NLO ¹⁰

Dijet Cross Sections in NC DIS

• Measurement of double differential cross sections $d\sigma/dM_{JJ}dQ^2, d\sigma/dar{E}_T dQ^2$ over $5 < Q^2 < 5000 \, \text{GeV}^2$ • It is observed that the spectra get harder as Q^2 increases • NLO QCD describes well the data over $15 < M_{JJ} < 95$ GeV and 8.5 $< \bar{E}_T < 60$ GeV except at low Q^2 , where the shape is ok but not the normalisation • Overview: at high Q^2 (> 70 GeV²) **NLO describes the data well;** as Q^2 decreases the theoretical uncertainties become large and NLO fails for $Q^2 < 10 \ {
m GeV^2}$

J Terrón (Madrid)

Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of $lpha_s$

ZEUS

• Dijet cross section $d\sigma_{2+1}/dQ^2$ for $470 < Q^2 < 20000 \text{ GeV}^2$ $E_T^{jet,1}(\text{Breit}) > 8 \text{ GeV}$ $E_T^{jet,2}(\text{Breit}) > 5 \text{ GeV}$ $-1 < \eta^{jet,1(2)}(\text{Lab}) < 2$

$$\Rightarrow \quad \textbf{Ratio } R_{2+1} \equiv \frac{d\sigma_{2+1}/dQ^2}{d\sigma_{tot}/dQ^2}$$

- Small experimental uncertainties.
- Comparison with NLO QCD calculations
- Small theoretical uncertainties:
 - \rightarrow uncertainties on the proton PDFs
 - \rightarrow hadronisation corrections
 - \rightarrow higher-order terms (> NLO)

Göttingen, HASCO2014

Uncertainties of the Proton PDFs: effects on jet cross sections

- Comparison of jet cross-section calculations using different parametrisations of the proton PDFs
 (e.g. MRST vs CTEQ) DOES NOT give a reliable estimation of the uncertainties due to the proton PDFs
- Several groups have developed methods to quantify these uncertainties by accounting (properly) for
- \rightarrow the statistical and correlated systematic uncertainties of each data set used in the determination of the PDFs $_{0.2}$
- \rightarrow the theoretical uncertainties affecting the extraction of the PDFs in the DGLAP fits

• CTEQ's analysis provides $2N_p + 1$ PDF sets $(N_p = number of free parameters) <math>\mathbf{x}$ consisting of the best fit S_0 and eigenvector basis sets in the plus and minus directions along each eigenvector, such that the best estimate and its uncertainty can be calculated \Rightarrow for any function of the proton PDFs (e.g. σ_{jet})

$$\Delta \sigma_{jet} = \frac{1}{2} (\sum_{i=1,N_p} [\sigma_{jet}(S_i^+) - \sigma_{jet}(S_i^-)]^2)^{1/2}$$

Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of $lpha_s(M_Z)$

Dijet Cross Sections at $Q^2 > 470~{ m GeV^2}$ and extraction of $lpha_s$

J Terrón (Madrid)

Inclusive Jet Cross Sections in NC DIS at $Q^2 > 125 \text{ GeV}^2$

 $ep
ightarrow e + {
m jet} + {
m X}$: inclusive jets at high Q^2

• Jets searched using the k_T cluster algorithm in Breit frame

- Kinematic region: $Q^2\!>\!125~{
 m GeV}^2$ and $|\cos\gamma_h|\!<\!0.65$
- \bullet At least one jet with $E_{T,{\rm B}}^{\rm jet}\!>\!8~{\rm GeV}$ and $-2\!<\!\eta_{\rm B}^{\rm jet}\!<\!1.5$

Small experimental uncertainties

- ightarrow uncorrelated: $\sim \pm 3~(7)\%$ at low (high) $Q^2/E_{T,{
 m B}}^{
 m jet}$
- ightarrow correlated: $\sim \pm 5~(2)\%$ at low (high) $Q^2/E_{T,{
 m B}}^{
 m jet}$

Small theoretical uncertainties

- ightarrow higher orders (below $\pm 5\%$ for $Q^2>250~{
 m GeV^2}$)
- ightarrow proton PDFs (below $\pm 3\%$)
- $ightarrow lpha_s(M_Z)$ (below $\pm 1~(2)\%$ at low (high) $Q^2/E_{T,{
 m B}}^{
 m jet}$)
- ightarrow parton-to-hadron corrections (below $\pm 2\%$)

\rightarrow Good description of data by NLO prediction

 \rightarrow validity of the description of the dynamics of jet production at $\mathcal{O}(\alpha_s^2)$

→ Measurements provide direct sensitivity to

 $lpha_s(M_Z)$ with small experimental and theoretical uncertainties

 $\mathcal{L}=300~{
m pb}^{-1}$ ZEUS dơ/dQ² (pb/GeV²) 5 5 1 ZEUS (prel.) 300 pb⁻¹ - NLO \otimes hadr $\otimes Z^0$ 10 -3 E^{jet}_{TB} > 8 GeV $-2 < \eta_{\rm B}^{jet} < 1.5$ 10 $|\cos \gamma_{\rm h}| < 0.65$ diff. to NLO 0.4 0.2 jet energy scale uncertainty 0 -0.2 theoretical uncertainty · -0.4 10³ 104 Q^2 (GeV²)

Inclusive Jet Cross Sections and extraction of $lpha_s$

• The energy-scale dependence of the coupling was determined by extracting α_s from the measured $d\sigma/dE_{T,B}^{\rm jet}$ at different $E_{T,B}^{\rm jet}$ values:

J Terrón (Madrid)

Göttingen, HASCO2014

July 21st, 2014

Jets in photoproduction

• Production of jets in γp collisions has been measured via ep scattering at $Q^2 \approx 0$

• At lowest order QCD, two hard scattering processes contribute to jet production \Rightarrow

• pQCD calculations of jet cross sections

$$\sigma_{jet} = \sum_{a,b} \int_0^1 dy \ f_{\gamma/e}(y) \int_0^1 dx_\gamma \ f_{a/\gamma}(x_\gamma,\mu_{F\gamma}^2) \int_0^1 dx_p \ f_{b/p}(x_p,\mu_{Fp}^2) \ \hat{\sigma}_{ab
ightarrow jj}$$

longitudinal momentum fraction of $\gamma/e^+(y)$, parton $a/\gamma(x_{\gamma})$, parton $b/\text{proton}(x_p)$ $\rightarrow f_{\gamma/e}(y) = \text{flux of photons in the positron (WW approximation)}$ $\rightarrow f_{a/\gamma}(x_{\gamma}, \mu_{F\gamma}^2) = \text{parton densities in the photon (for direct processes <math>\delta(1 - x_{\gamma})$)} $\rightarrow f_{b/p}(x_p, \mu_{Fp}^2) = \text{parton densities in the proton}$ $\rightarrow \sigma_{ab \rightarrow jj}$ subprocess cross section; short-distance structure of the interaction

Photoproduction of Jets

- Measurements of jet photoproduction provide
- \rightarrow Test of NLO QCD predictions based on current parametrisations of the proton and photon PDFs
- \rightarrow Dynamics of resolved and direct processes
- \rightarrow Photon structure: information on quark densities from F_2^{γ} in e^+e^- ; gluon density poorly constrained. Jet cross sections in photoproduction are sensitive to both the quark and gluon densities in the photon at larger scales $\mu_{F\gamma}^2 \sim E_{T,jet}^2 (200 - 10^4 \text{ GeV}^2)$ \rightarrow Proton structure: well constrained by DIS except
- for the gluon density at high x. Jet cross sections in γp are sensitive to parton densities at x_p up to ~ 0.6
- Observable to separate the contributions: the fraction of the photon's energy participating in the production of the dijet system

$$x_{\gamma}^{OBS} = rac{1}{2E_{\gamma}}\sum_{\mathrm{i}=1}^{2}E_{T}^{jet_{i}}e^{-\eta^{jet_{i}}}$$

Variables for Jet Search in ep collisions at low Q^2 (Photoproduction)

hadrons

• The kinematics of ep collisions at low Q^2 is similar to that of $p\bar{p}$ collisions

 \Rightarrow Input to the jet algorithm: $E_{T,i}$, η_i and ϕ_i for every hadron i

 \Rightarrow "distance" between hadrons i and j: $\sqrt{\Delta\eta^2_{ij} + \Delta\phi^2_{ij}}$

The longitudinally invariant k_T algorithm for photoproduction

- Infrared and collinear safe to all orders in perturbative QCD
- Invariant under longitudinal boosts (along the beam axis)
- Suppression of beam remnant jet contributions through the use of transverse energies and by not forcing all the particles to be assigned to jets (nor requiring a certain jet shape)
- Small experimental and theoretical uncertainties

Dijet Photoproduction: the dynamics of resolved and direct processes

• The dynamics of dijet production has been investigated by studying the variable:

$$\cos\theta^* \equiv tanh(\frac{1}{2}(\eta^{jet,1} - \eta^{jet,2}))$$

 \rightarrow for two-to-two parton scattering θ^* coincides with the scattering angle in the dijet CMS

- QCD predicts different dijet angular distributions for resolved and direct:
- $\rightarrow \text{Resolved (gluon-exchange dominated)}$ $d\sigma/d|\cos\theta^*| \sim \frac{1}{(1-|\cos\theta^*|)^2}$ $\rightarrow \text{Direct (quark-exchange only)}$ $d\sigma/d|\cos\theta^*| \sim \frac{1}{(1-|\cos\theta^*|)^1}$

• The dijet angular distribution $d\sigma/d|\cos\theta^*|$ for $x_{\gamma}^{OBS} < 0.75$ ("resolved") should be steeper than that of $x_{\gamma}^{OBS} > 0.75$ ("direct") as $|\cos\theta^*| \rightarrow 1$

Dijet Photoproduction: the dynamics of resolved and direct processes

0.6

Icosθ*I

0.8

High- M_{JJ} Dijet Photoproduction

- Measurement of the dijet differential cross section $d\sigma/dM_{JJ}$ in the range $47 < M_{JJ} < 160$ GeV for dijet events with $E_T^{jet} > 14$ GeV, $-1 < \eta^{jet} < 2.5$ and $|\cos \theta^*| < 0.8$
- Small experimental uncertainties:

ightarrow jet energy scale known to $1\% \Rightarrow 5\%$ on $d\sigma/dM_{JJ}$

- Small theoretical uncertainties:
- ightarrow higher-order terms (varying μ_R) below 15%
- $ightarrow \gamma$ PDFs (GRV-HO,AFG-HO) below 10%
 - \rightarrow resolved processes suppressed at high M_{JJ}
- ightarrow small hadronisation corrections, below 5%
- NLO QCD calculations describe the shape and normalisation of the measurements well

 \rightarrow Validity of the pQCD description of the dynamics of parton-parton and γ -parton interactions in photoproduction

New jet algorithms

- Tests of pQCD with jets require infrared- and collinear-safe jet algorithms:
 - \rightarrow performance of k_T cluster algorithm in longitudinally invariant inclusive mode (S Catani, S Ellis & D Soper) tested extensively at HERA:
 - \rightarrow stringent tests of pQCD: good description of data for different jet radii
 - \rightarrow good performance of algorithm: small theoretical uncertainties / hadronisation corrections
 - \rightarrow new measurements in photoproduction presented here
- New infrared- and collinear-safe jet algorithms:
 - ightarrow anti- k_T (M Cacciari, G Salam & G Soyez) provides pprox circular jets
 - ***** experimentally desirable
 - → SIScone (G Salam & G Soyez) seedless cone algorithm provides infrared- and collinear-safe calculations
 - ***** theoretically necessary
- New studies at HERA:
 - \rightarrow test performance of **anti-** k_T and **SIScone** in well-understood hadron-induced reaction:
 - * comparison to measurements based on k_T
 - * comparison of measurements and NLO QCD calculations
 - * study of theoretical uncertainties and hadronisation corrections

New jet algorithms

- New infrared- and collinear-safe jet algorithms:
 - ightarrow anti- k_T (M Cacciari, G Salam & G Soyez) and SIScone (G Salam & G Soyez)
- Cluster algorithms:
 - $\rightarrow d_{ij} = \min[(E_{T,B}^i)^{2p}, (E_{T,B}^j)^{2p}] \cdot \Delta R^2 / R^2$ with $p = 1 \ (-1)$ for k_T (anti- k_T)
 - \rightarrow anti- k_T keeps infrared and collinear safety and provides \approx circular jets (experimentally desirable)
- Cone algorithms:
 - → seedless cone algorithm produces also jets with well-defined area and is infrared and collinear safe (theoretically necessary)

Benefits of the new jet algorithms

• Anti- k_t and SISCONE jet algorithms provide jets with better control on the shape (\approx circular) and area (dictated by the jet radius R) than with the k_t jet algorithm

• Essential to control and suppress the energy contributions from particles that fall into the jet but originate from

→ the "underlying event" (hadrons from the same proton-proton collision but unrelated to the hard interaction
 (a proton is an extended object)

 \rightarrow additional soft proton-proton interactions overlaid with the interesting one (pile-up)

 $Z \rightarrow \mu^+ \mu^-$ event candidate with 25 (!!) reconstructed vertices High pile-up environment in 2012

Inclusive Jet Photoproduction

 $ep \rightarrow e + jet + X$: inclusive-jet cross sections

- Kinematic region: $Q^2 < 1$ GeV 2 and 0.2 < y < 0.85
- Jet search: k_T , anti- k_T and SIScone in laboratory frame
- At least one jet with $E_T^{
 m jet}\!>\!17\,{
 m GeV}$ and $-1\!<\!\eta^{
 m jet}\!<\!2.5$
- Experimental uncertainties:
 - ightarrow systematic: typically below $\pm 5\%$
 - ightarrow energy scale $\pm 1\%$ (!): $\sim \pm 5~(10)\%$ at low (high) $E_T^{
 m jet}$
- Comparison to NLO predictions (Klasen et al):
 - \rightarrow good description of data by NLO prediction
 - \rightarrow validity of the description of the dynamics of jet photoproduction at $\mathcal{O}(\alpha_s^2)$
- Theoretical uncertainties:
 - → higher orders: $\pm 10 \ (4)\%$ at low (high) E_T^{jet} (k_T /anti- k_T) $\pm 14 \ (7)\%$ at low (high) E_T^{jet} (SIScone)
 - ightarrow proton PDFs: $\pm 1~(5)\%$ at low (high) $E_T^{
 m jet}$
 - ightarrow hadronisation: $<\pm 3\%$; $lpha_s(M_Z)$: $<\pm 2\%$
 - ightarrow photon PDFs: $\pm 9-10~(1-3)\%$ at low (high) $E_T^{
 m jet}$

Inclusive Jet Photoproduction and Determination of $lpha_s$

• The energy-scale dependence of the coupling was determined from the data ightarrow results in good agreement with predicted running of α_s over a wide range in $E_T^{
m jet}$

• The "jet" saga continues tomorrow morning

 \rightarrow jets in hadron-hadron colliders \rightarrow by Caterina Doglioni

