On some Top Quark Physics Issues

S. Tokár, Comenius Univ., Bratislava HASCO Summer School, Goettingen 2014

7/30/2014

Topics in This Talk

- Motivation for top physics
- Top quark mass what do we measure?
- On role of the top quark mass in intrinsic consistency tests of the Standard model
- Stability of vacuum and the top mass

. . .

Top quark physics: Motivation

■ Very high mass: near EWSB scale η Top Youkawa coupling $\lambda_t = \sqrt{2m_{top}}/\eta \approx 1$

- □ tt-bar production X-sections: test of QCD → to is produced at very small distances $1/m_t \Rightarrow \alpha_s(m_{top}) \approx 0.1$: pert. expansion converges rapidly
- Top decays before hadronization

 $\frac{1/m_t}{Production time < Lifetime} < \frac{1/\Gamma_t}{Lifetime} < \frac{1/\Lambda}{Hadronization time} < \frac{m_t}{\Lambda^2}$

- \rightarrow study of spin characteristics (test of V-A)
- Cross sections sensitive to new physics
 - \rightarrow resonat production of $\dagger \overline{\dagger}$, decay: t \rightarrow Hb
- Important background for Higgs studies

What is the Top Quark Mass?

The top-quark mass is presently inferred:

- ✓ by the kinematical reconstruction of the invariant mass of its decay products *via* the matrix element or the template method
- \checkmark by its relation to the top-quark pair production cross section

1st case: more precise - not a well defined renormalization scheme \Rightarrow a theoretical uncertainty in its interpretation - *top quark mass is reconstructed* 2nd case: not so precise – renormalization scheme is unambiguously defined – interpretation: *pole mass of the top quark is reconstructed*

On top quark mass

□ World (LHC+Tevatron) top quak mass combination:

 $m_{\rm top}$ = 173.34 ± 0.76 (0.27 ± 0.24 ± 0.67) GeV

□ After A. Hoang and I. Stewart, Nucl.Phys.Proc.Suppl. 185 (2008) 220, the latest combinations of top mass measurements includes a statement like:

"In all measurements considered in the present combination, the analyses are calibrated to the MC top-quark mass definition. It is expected that the difference between the MC mass definition and the formal pole mass of the top quark is up to the order of 1 GeV."

□ In *S. Moch et al., arXiv:1405.4781* is the suggestion:

A more appropriate description of the content of Ref. [*Hoang and Stewart*] is: "The uncertainty on the translation from the MC mass definition to a theoretically well defined short distance mass definition at a low scale is currently estimated to be of the order of 1 GeV."

My understanding is:

Measured top mass (MC mass) ≠ top pole ("true") mass by at least ~1 GeV

Particle mass – preliminary words

What is the Top Quark Mass ?

- Top quark pole mass: corresponds to pole in the full top quark propagator Difference *wrt* electron:
- ✓ top is unstable pole is complex: $m_{top} + i\Gamma_{top}$
- ✓ Top is colored object due to confinement its mass cannot be determined with accuracy better than 𝜆_{QCD} (non-perturbative effects)

Pole mass is close to invariant mass of the top decay products. Ambiguities: extra radiation, color reconnection and hadronization – at least one quark not coming from top decay is trapped by *b*-quark.

Pole mass vs short distance mass perturbatively (+ non-perturb. corrections):

$$\vec{m}_{pole} = \vec{m} \left(\vec{m} \right) \left(1 + \frac{4}{3} \frac{\vec{\alpha}_s(\vec{m})}{\pi} + 8.28 \left(\frac{\vec{\alpha}_s(\vec{m})}{\pi} \right)^2 + \dots \right) + O\left(\Lambda_{QCD} \right)^2$$
Not present in electron case
Scale $\mu_R = \vec{m} \gg \Lambda_{QCD}$

top self energy Σ pert. expanded in α_s

arXiv:hep-ph/9612329v1 7/30/2014

Determination of short distance mass

- Short distance mass $\equiv \overline{MS}$ mass Determination of $\equiv \overline{MS}$ mass via the total cross section $\sigma_{pp \to t\bar{t}X}$
- Total NLO X section vs top pole mass:

 $\sigma_{pp \to t\bar{t}X} = \alpha_s^2 \sigma^{(0)}(m_{top}) + \alpha_s^3 \sigma^{(1)}(m_{top}) + \dots$

Using the relation between top pole mass and running mass (\overline{MS} scheme):

 $m_{top} = m(\mu_R) \Big(1 + \alpha_S(\mu_R) d^{(1)}(\mu_R) + \ldots \Big)$

Coefficient $d^{(1)}$ is known to 3-loop order

Total $t\overline{t}$ X section vs top \overline{MS} mass $\overline{m} = m(m)$:

Total $t\bar{t}$ X sec for LO(red), NLO(green) and NNLO(blue) vs μ_R/μ_F (renormalization/factorization scales)

$$\sigma_{pp \to t\bar{t}X} = \alpha_S^2 \sigma^{(0)}(\bar{m}) + \alpha_S^3 \left(\sigma^{(1)}(\bar{m}) + \bar{m}d^{(1)} \partial_m \sigma^{(0)}(m) \Big|_{m=\bar{m}} \right) + \dots$$

$$\mu_F = \bar{m}/2, \bar{m}, 2\bar{m}$$
Measuring the total $t\bar{t}$ X section we can extract \overline{MS} mass $\bar{m}!$ $\bar{m} = 163.0 \pm 1.6^{+0.6}_{-0.3}$ GeV

7/30/2014

S. Tokar, top quark physics, HASCO 2014

Measured vs Top pole mass

Solution after the conclusion:

Measured top quark mass (m_t^{MC}) differs from pole top mass m_t^{pole} due to non-perturbative effects \Rightarrow

- ✓ the m_t^{MC} mass can be related to a scale-dependent short-distance mass: MSR mass $m_t^{MSR}(R)$ (see Nucl.Phys.Proc.Suppl. 185 (2008) 220)
- ✓ The analysis done in *Nucl.Phys.Proc.Suppl.* 185 (2008) 220 gives:

 $m_t^{MC} = m_t^{MRS} \left(3_{-2}^{+6}\right) \text{GeV}$

For each choice of R the MSR mass $m_t^{MSR}(R)$ represents a different mass definition – we have R= 1, 3 and 9 GeV.

The quoted scale uncertainty is an estimate of the conceptual uncertainty that is currently contained in this relation - associated to

- unknown higher order corrections
- MC machinery how the parton shower, shower cuts and hadronization model are implemented

From short distance to pole mass

- Reconstruct. mass is identified with short distance mass at low scale O(1) GeV: $m^{rec} \rightarrow m^{MSR}(R)$ with $R \simeq 1 \dots 9$ GeV \Rightarrow
- Two options [*arXiv:1405.4781*]:
- ✓ evolve $m^{MSR}(R)$ from low scale $R \sim 3$ GeV to R = m(m) and convert from m(m) to pole mass
 1,-2 and 3 loops

$m^{MSR}(1)$	$m^{MSR}(2)$	$m^{MSR}(3)$	m(m)	$m^{pl \leftarrow}_{llp}$	$m^{pl} \stackrel{\leftarrow}{_{2lp}}$	m ^{pl} 4
173.72	173.40	172.78	163.76	171.33	172.95	173.45

✓ convert from $m^{MSR}(R)$ at low scale directly to pole mass - nonperturbative method used (Effective HQ theory approach (Wilson coefficients))

$m^{MSR}(1)$	$m^{MSR}(2)$	$m^{MSR}(3)$	m^{pl}_{llp}	m^{pl}_{2lp}	m^{pl}_{3lp}
173.72	173.40	172.78	173.72	173.87	173.98

Using 1st approach and the world top mass average:

 $m_{pole} = 173.34 \pm 0.76 GeV (exp) + \Delta m(th)$

where $\Delta m(th) = \pm 0.7 \text{GeV} (m^{\text{rec}} \rightarrow m^{\text{MSR}}(3 \text{GeV})) + 0.5 \text{GeV} (m(m) \rightarrow m_{\text{pole}})$

Top pole mass from tt-bar jet

In [arXiv:1303.6415] \rightarrow suggestion to use on top pole mass determination:Top-quark pairs in association with a hard jet . $\Delta \sigma_{t\bar{t}+1-jet+X} \approx -5 \frac{\Delta m_t^{pole}}{m_t^{pole}}$ From NLO calculations \Rightarrow

For study: the dimensionless differential distribution

$$R(m_t^{pole},\rho_s) = \frac{1}{\sigma_{t\bar{t}+1-jet+X}} \frac{d\sigma_{t\bar{t}+1-jet+X}}{d\rho_s} (m_t^{pole},\rho_s), \quad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}}j}}$$

Due to the normalization many experimental and theoretical uncertainties cancel between numerator and denominator.

Sensitivity:

$$\mathcal{S}(\rho_s, \Delta m_t) = \sum_{\Delta = \pm \Delta m_t} \frac{|\mathcal{R}(\rho_s, 170 \text{ GeV}/c^2) - \mathcal{R}(\rho_s, 170 \text{ GeV}/c^2 + \Delta)|}{2|\Delta|\mathcal{R}(170 \text{ GeV}, \rho_s)} \implies \left|\frac{\Delta \mathcal{R}}{\mathcal{R}}\right| \approx (m_t \mathcal{S}) \times \left|\frac{\Delta m_t}{m_t}\right|$$

For $\rho_s \approx 0.8$ a 1% change in m_t leads to a relative change of 17% of R.

Uncertainties related to uncalculated higher order corrections or to PDFs are expected to affect the mass measurement by less than 1GeV.

Top quark vs EW precision measurements

Relation between W boson, top quark and Higgs boson masses

Top mass and EW precision physics

Radiative corrections to W-boson propagator (e.g. for $\mu^- \rightarrow \nu_{\mu} W^- \rightarrow \nu_{\mu} e^- \overline{\nu_e}$):

 $\Delta \rho \sim m_t^2 / M_W^2 \qquad \left(\Delta r \right)_{nl} \propto \ln M_H^2 / M_Z^2$

Masses of top, W and Higgs are bounded by

$$M_W^2 \left(I - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \left(I + \Delta r \right), \quad \Delta r = \Delta \alpha + \frac{S_W}{c_W} \Delta \rho + \left(\Delta r \right)_{nl}$$

 M_{z} , G_{F} and α are known with high precision:

- $M_7 = 91.1876 \pm 0.0021 \text{ GeV}$
- $G_F = 1.166367(5) \times 10^{-5} \text{ GeV}^{-2}$
- α = 1/137.035999679(94)

Measuring precisely masses m_t and M_W using (*) M_H can be extracted! Drawback: dependence on Higgs mass is weak (logarithmic)

Global SM fit to EW precision data

Gfitter package used for the global fit (http://project-gfitter.web.cern.ch/project-gfitter/) There is a set of N_{exp} precisely measured observables described by N_{exp} theoretical expressions – those are functions of N_{mod} model parameters

From the global fit (measured m_t/M_W excluded): $m_t = 175.8^{+2.8}_{-2.8} \text{ GeV}, \quad M_W = 80.360 \pm 0.011 \text{ GeV}$

$$M_H < 152 \text{ GeV at } 95\% \text{ C.L}$$

Top mass and EW precision physics

- SM-like Higgs boson discovery at 125.7 \pm 0.4 GeV is compatible with global EW data at 1.3 σ (p = 0.18)
- Contours of 68% and 95% CL obtained from scans of fits with fixed variable pairs M_w vs m_t
- Dependence of EW observables on M_H is only logarithmic!

- The blue and grey allowed regions are the results of the fit including and excluding the M_H measurements, respectively.
- The horizontal and vertical bands indicate the 1σ regions of the $M_{\rm W}$ and m_t measurements.

Vacuum stability and top mass

Running quartic Higgs coupling

Higgs quartic coupling

Higgs boson looks to be firmly established by LHC ⇒ Vacuum has nonzero Higgs field component (Higgs condensate) What can be said about its stability?

Higgs potential:

$$V(\phi) = \mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2, \quad \phi = \frac{\phi_1 + i\phi_2}{\sqrt{2}}$$

For $\mu^2 < 0$ and $\lambda > 0$
Top loops
mainly

 \Rightarrow due to interactions λ is running constant – scale dependent (as mass):

$$\lambda(\mu_R) = \frac{G_F M_H}{\sqrt{2}} + \Delta \lambda(\mu_R) \implies \text{What will happen if } \lambda < 0 ?$$

 $\Delta\lambda$ is calculated in two loop approximation – the most important contribution: due to QCD and top Yukawa interactions.

Top quark mass and instability of vacuum

High precision top mass is a fundamental input to the understanding of the SM, has cosmological implications.

Renorm group Higgs quartic coupling $\lambda(\mu)$ evolution – steep decrease due to 1-loop top corrections \Rightarrow slope of λ strongly depends on m_t .

At $\mu = 10^{10} \cdot 10^{11}$ GeV: change of λ sign \Rightarrow vacuum is only in a local minimum \Rightarrow meta-stability of vacuum.

SM assumed and evolution at NNLO

Dashed lines 3σ bands for m_t (gray), α_s (red) and M_H (blue)

Coupling λ closed to 0 at Λ_{P} (Planck scale)! 7/30/2014 S. Tokar, top quark

S. Tokar, top quark physics, HASCO 2014

Top quark mass and instability of vacuum

Assuming SM – no other scale between $\Lambda_{EWSB} \sim 100$ GeV and $\Lambda_{P} \sim 10^{19}$ GeV $M_{t} = 173.1 \pm 0.6$ GeV , $\alpha_{S}(M_{Z}) = 0.1184 \pm 0.0007$ and $M_{h} = 125.7 \pm 0.3$ GeV It looks we live in the world with meta-stable vacuum!

The condition of absolute stability up to the Planck scale:

$$M_{H} [\text{GeV}] > 129.4 + 1.4 \left(\frac{m_{t} [\text{GeV}] - 173.1}{0.7} \right) - 0.5 \left(\frac{\alpha_{s} (M_{z}) - 0.1184}{0.0007} \right) \pm 1.0_{th}$$
$$m_{t} < (171.36 \pm 0.46) \text{GeV}$$

19

What does it mean metastability?

From recent m_t and M_H measurements:

 \Rightarrow the SM Higgs potential develops an instability at scales well below M_P :

$$\log_{10} \frac{A_I}{\text{GeV}} = 11.0 + 1.0 \left(\frac{M_H}{\text{GeV}} - 125.7\right) - 1.2 \left(\frac{m_t}{\text{GeV}} - 173.34\right) + 0.4 \frac{\alpha_s (M_z) - 0.1184}{0.0007}$$

 $\Lambda_{l} \equiv$ the scale at which the effective Higgs quartic λ_{eff} becomes negative - $\Lambda_{l} \approx 10^{11}$ GeV.

If it is true (Higgs potential is unstable) \Rightarrow

the Higgs field *h* can tunnel from the EW vacuum to the true vacuum at large field values

- lifetime for quantum tunneling turns out to be (much) larger than the age of the Universe, rendering our universe metastable.
- Question of M_{H} , m_{t} uncertainty is of a great importance ...

Implication for the inflation

Fluctuations in Higgs field during inflation are set by Hubble scale *H*:

$$\delta h = \frac{H}{2\pi}, \qquad H^2 = \frac{\pi}{16} M_P^2 \Delta_R^2 r$$

 $\Delta_{\rm R} \equiv$ amplitude of curvature perturbations measured by Planck ($\Delta_{\rm R}^2 = 2.21 \times 10^{-9}$) $r \equiv$ tensor-scalar ratio measured by BICEP2

- measurement of BICEP2 [arXiv:1403.3985] indicates:

$$H \simeq 1.0 \times 10^{14} \,\text{GeV} \sqrt{\frac{r}{0.16}}, \quad r \approx 0.2$$

When $H > \Lambda_I$ (instability scale), the likelihood that h fluctuates to the unstable region of the potential during inflation will be sizable [*arXiv:1404.5953*].

Fate of universe: different scenarios of the post-inflationary vacuum evolution – from "our universe is extremely improbable" to "the additional vacuum does not appear to preclude existence of our universe".

Conclusions

Top quark is a special fundamental particle – studying its properties we can:

- Lest the Standard model,
- to reveal a possible new physics,

to understand better global questions concerning the Universe fate

Cross Section of Top Quark production

+ + Production Cross Section

Top quark X-section: Experiment vs Theory

Factorization theorem:

experiment

$$(\sigma) = \sum_{i,j} \int dx_1 dx_2 F_i^{(1)}(x_1, \mu_F) F_j^{(2)}(x_2, \mu_F) \hat{\sigma}_{ij}(s; \mu_F, \mu_R)$$

Parton Distribution Functions (PDFs)

 $F_i^{(\lambda)}(x_{\lambda}, \mu_F) \equiv \text{probability density to observe a parton } i$ with longitudinal momentum fraction x_{λ} in incoming hadron λ , when probed at a scale μ_F

 $\mu_F \equiv$ factorization scale (a free parameter) - it determines the proton structure if probed (by virtual photon or gluon) with $q^2 = -\mu_F^2$

 $\mu_R \equiv$ renormalization scale – defines size of strong coupling constant

```
Usual choice: \mu_F = \mu_R = \mu \in (m_t/2, 2m_t)
```


theory

t t Production Cross Section

The LO top quark pairs cross section (Born term):

$$d\hat{\boldsymbol{\sigma}} = \frac{1}{2(p_1 + p_2)^2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} \delta(p_1 + p_2 - p_3 - p_4) \overline{|M|^2}$$

Quark – antiquark annihilation

$$|M|^{2} (q\bar{q} \to t\bar{t}) = (4\pi\alpha_{s})^{2} \frac{8}{9} \left(2 \frac{(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{2}} + \frac{m_{t}^{2}}{(p_{1} + p_{2})^{2}} \right)$$
Gluon fusion
$$|M|^{2} (gg \to t\bar{t}) = (4\pi\alpha_{s})^{2} \left(\frac{(p_{1} + p_{2})^{4}}{(24(p_{1} \cdot p_{3})(p_{2} \cdot p_{3})} - \frac{8}{9} \right)$$

$$|M|^{2} (gg \to t\bar{t}) = (4\pi\alpha_{s})^{2} \left(\frac{(p_{1} + p_{2})^{4}}{(24(p_{1} \cdot p_{3})(p_{2} \cdot p_{3})} - \frac{8}{9} \right)$$

$$\times \left(4 \frac{(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}} \right)$$

$$K = \frac{4(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{3})^{2}} + \frac{4(p_{1} \cdot p_{3})^{2}}{(p$$

t T Production Cross Section

Theory for top X-section is at NNLO:

Xsec is expanded into series of strong coupling constant:

$$\sigma_{ij}\left(\beta,\frac{\mu^2}{m^2}\right) = \frac{\alpha_s^2}{m^2} \left\{ \sigma_{ij}^{(0)} + \alpha_s \left[\sigma_{ij}^{(1)} + L\sigma_{ij}^{(1,1)}\right] + \alpha_s^2 \left[\sigma_{ij}^{(2)} + L\sigma_{ij}^{(2,1)} + L^2 \sigma_{ij}^{(2,2)}\right] + O\left(\alpha_s^3\right) \right\}$$

$$LO \sim \alpha_s^2, \quad NLO \sim \alpha_s^3, \quad NNLO \sim \alpha_s^4 \quad \cdots \quad \beta = \sqrt{1 - 4m^2/s} \quad L \equiv \text{big log term}$$

NLO: virtual and real corrections are added to LO

Virtual corrections:

Taking $|A+B|^2 = ... + AB^* + ..., AB^* \sim \alpha_S^3$

Real corrections – with real gluons (~ α_s^3):

A few top Cross Section issues

Higher order real and virtual corrections exhibit IR and UV divergences:

✓ IR singularity: $E_k \rightarrow 0$ and $1 - \beta_p \cos \theta \rightarrow 0 \Rightarrow$ cancelled when Xsec of virtual and real emission are summed also mass singularities are cancelled \Rightarrow Cancelation is not full \Rightarrow presence of big logs (L) in Xsec terms !

✓ UV singularities in loops () are handled by renormalization.

In real we observe tt decay products not $t\overline{t}$ Factorization is used based on the narrow width approximation:

✓ polarized top quarks are produced on mass shell

✓ polarized on-shell top quarks decay Narrow width app. vs direct $pp \rightarrow WWbb$:

For LHC 7TeV/DIL: Xsec(fb) 837 vs 841 also done for 14 and 1.96TeV

...an another Higgs restriction plot

