On some Top Quark Physics Issues

S. Tokár, Comenius Univ., Bratislava HASCO Summer School , Goettingen 2014

Topics in This Talk

- \triangleright Motivation for top physics
- \triangleright Top quark mass what do we measure?
- \triangleright On role of the top quark mass in intrinsic consistency tests of the Standard model
- \triangleright Stability of vacuum and the top mass

...

Top quark physics: Motivation

Very high mass: near EWSB scale η Top Youkawa coupling $\lambda_t = \sqrt{2m_{\text{top}}}/\eta \approx 1$

- \Box tt-bar production X-sections: test of QCD \rightarrow to is produced at very small distances $1/m_t \Rightarrow \alpha_s(m_{top}) \approx 0.1$: pert. expansion converges rapidly
- \Box Top decays before hadronization

 m_t/Λ^2 $<$ $1/\Gamma_{\rm t}$ $<$ $1/\Lambda$ $<$ $\rm m_{\rm t}/\Lambda^2$
ne $<$ Lifetime $<$ Hadronization time $<$ Spin decorrelation time $1/m_t$ \lt Production time < Lifetime

- \rightarrow study of spin characteristics (test of V-A)
- \Box Cross sections sensitive to new physics
	- \rightarrow resonat production of \bar{t} , decay: t \rightarrow Hb
- Important background for Higgs studies

 $\eta = 246$ GeV $\Lambda \approx 250$ MeV

What is the Top Quark Mass?

The top-quark mass is presently inferred:

- \checkmark by the kinematical reconstruction of the invariant mass of its decay products *via* the matrix element or the template method
- \checkmark by its relation to the top-quark pair production cross section

1st case: more precise - not a well defined renormalization scheme \Rightarrow a theoretical uncertainty in its interpretation - *top quark mass is reconstructed* 2nd case: not so precise – renormalization scheme is unambiguously defined – interpretation: *pole mass of the top quark is reconstructed*

On top quark mass

□ World (LHC+Tevatron) top quak mass combination:

 m_{top} = 173.34 \pm 0.76 (0.27 \pm 0.24 \pm 0.67) GeV

 After *A. Hoang and I. Stewart, Nucl.Phys.Proc.Suppl. 185 (2008) 220,* the latest combinations of top mass measurements includes a statement like:

"In all measurements considered in the present combination, the analyses are calibrated to the MC top-quark mass definition. It is expected that the difference between the MC mass definition and the formal pole mass of the top quark is up to the order of 1 GeV."

In *S. Moch et al., arXiv:1405.4781* is the suggestion:

A more appropriate description of the content of Ref. [*Hoang and Stewart*] is: "The uncertainty on the translation from the MC mass definition to a theoretically well defined short distance mass definition at a low scale is currently estimated to be of the order of 1 GeV ."

 \triangleright My understanding is:

Measured top mass (MC mass) \neq top pole ("true") mass by at least \sim 1 GeV

Particle mass – preliminary words

What is the Top Quark Mass ?

- Top quark pole mass: corresponds to pole in the full top quark propagator Difference *wrt* electron:
- \checkmark top is unstable pole is complex: m_{top} +*i* Γ_{top}
- \checkmark Top is colored object due to confinement its mass cannot be determined with accuracy better than A_{QCD} (non-perturbative effects)

Pole mass is close to invariant mass of the top decay products. Ambiguities: extra radiation, color reconnection and hadronization – at least one quark not coming from top decay is trapped by *b*-quark.

Pole mass vs short distance mass perturbatively (+ non-perturb. corrections):

$$
\vec{m}_{pole} = \vec{m} \left(\vec{m} \right) \left(1 + \frac{4}{3} \frac{\vec{\alpha}_s(\vec{m})}{\pi} + 8.28 \left(\frac{\vec{\alpha}_s(\vec{m})}{\pi} \right)^2 + \cdots \right) + \underbrace{\left(\vec{o} \left(\Lambda_{QCD} \right) \right)}_{\text{Scale } \mu_R} \text{Scale } \mu_R = \overline{m} \gg \Lambda_{QCD}
$$
\ntop self energy Σ pert. expanded in α_s

arXiv:hep-ph/9612329v1

Determination of short distance mass

- Short distance mass $\equiv \overline{MS}$ mass Determination of $\equiv MS$ mass *via* the total cross section $\sigma_{pp \to t \bar{t} X}$
- Total NLO Xsection vs top pole mass:

Using the relation between top pole mass and running mass (\overline{MS} scheme):

 $m_{top} = m(\mu_R)(1 + \alpha_s(\mu_R)d^{(1)}(\mu_R) + ...)$ [arXive:1001.3987] μ/μ_f

Coefficient *d (1)* is known to 3-loop order

Total $t\bar{t}$ X section vs top \overline{MS} mass $\overline{m} = m(m)$:

Total $t\bar{t}$ X sec for LO(red), NLO(green) and NNLO(blue) vs $\mu_{\text{\tiny R}}/\mu_{\text{\tiny F}}$ (renormalization/factorization scales)

 $\mu_F = \bar{m}/2$, \bar{m} , $2\bar{m}$

$$
\sigma_{pp \to t\bar{t}X} = \alpha_S^2 \sigma^{(0)}(\bar{m}) + \alpha_S^3 \left(\sigma^{(1)}(\bar{m}) + \bar{m}d^{(1)}\partial_m \sigma^{(0)}(m)\Big|_{m=\bar{m}} \right) + \dots
$$

7/30/2014 S. Tokar, top quark physics, HASCO 2014 8 Measuring the total $t\bar{t}$ X section we can extract \overline{MS} mass \overline{m} ! $\bar{m} = 163.0 \pm 1.6^{+0.6}_{-0.3} \,\mathrm{GeV}$

Measured vs Top pole mass

Solution after the conclusion:

Measured top quark mass (m_t^{MC}) differs from pole top mass m_t^{pole} due to non-perturbative effects \Rightarrow

- \checkmark the m_t^{MC} mass can be related to a scale-dependent short-distance mass: $\overline{\textsf{MSR}}$ mass $m_t^{\textit{MSR}}(R)$ (see *Nucl.Phys.Proc.Suppl. 185 (2008) 220*)
- The analysis done in *Nucl.Phys.Proc.Suppl. 185 (2008) 220* gives:

 $m_t^{MC} = m_t^{MRS} \left(3^{+6}_{-2} \right)$ GeV

For each choice of R the MSR mass $m_t^{MSR}(R)$ represents a different mass definition – we have R= 1, 3 and 9 GeV.

The quoted scale uncertainty is an estimate of the conceptual uncertainty that is currently contained in this relation - associated to

- **unknown higher order corrections**
- MC machinery how the parton shower, shower cuts and hadronization model are implemented

From short distance to pole mass

- Reconstruct. mass is identified with short distance mass at low scale O(1) GeV: $m^{rec} \rightarrow m^{MSR}(R)$ with R $\simeq 1...9$ GeV \Rightarrow
- Two options [*arXiv:1405.4781*]:
- \checkmark evolve $m^{MSR}(R)$ from low scale $R \sim 3$ GeV to $R = m(m)$ and convert from *m(m)* to pole mass $1, 2$ and 3 loops

 convert from *mMSR(R)* at low scale directly to pole mass - nonperturbative method used (Effective HQ theory approach (Wilson coefficients))

Using 1st approach and the world top mass average:

 m_{pole} = 173.34 ± 0.76GeV (exp) + $\Delta m(th)$

where $\Delta m(th) = \pm 0.7$ GeV (m^{rec} \rightarrow m^{MSR}(3GeV)) + 0.5GeV (m(m) \rightarrow m_{pole})

Top pole mass from tt-bar jet

In $[arXiv:1303.6415] \rightarrow$ suggestion to use on top pole mass determination: Top-quark pairs in association with a hard jet . From NLO calculations 1-jet+X ϵ ΔH_l 1-jet+X $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$ $5\frac{m}{1}$ *pole* $t t + 1 - \text{jet} + X$ $\qquad \qquad \qquad \mathcal{L} \longrightarrow t$ *pole* m_t^2 $m_t^$ *m* $\Delta \sigma_{\bar{t}+1 \text{ jet}+X}$ Δm^{pole} $\sigma_{\tau_{\text{max}}}$ and m_{τ} and $+1$ -1et+X t \approx \sim \sim

For study: the dimensionless differential distribution

$$
R(m_t^{pole}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}+X}} \frac{d\sigma_{t\bar{t}+1\text{-jet}+X}}{d\rho_s} (m_t^{pole}, \rho_s), \quad \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}}}}
$$

Due to the normalization many experimental and theoretical uncertainties cancel between numerator and denominator.

Sensitivity:

$$
\mathcal{S}(\rho_s, \Delta m_t) = \sum_{\Delta = \pm \Delta m_t} \frac{|\mathcal{R}(\rho_s, 170 \text{ GeV}/c^2) - \mathcal{R}(\rho_s, 170 \text{ GeV}/c^2 + \Delta)|}{2|\Delta|\mathcal{R}(170 \text{ GeV}, \rho_s)} \implies \left| \frac{\Delta \mathcal{R}}{\mathcal{R}} \right| \approx (m_t \mathcal{S}) \times \left| \frac{\Delta m_t}{m_t} \right|
$$

For $\rho_{\rm s}$ \approx 0.8 a 1% change in m_t leads to a relative change of 17% of R.

Uncertainties related to uncalculated higher order corrections or to PDFs are expected to affect the mass measurement by less than 1GeV.

Top quark *vs* EW precision measurements

Relation between W boson, top quark and Higgs boson masses

Top mass and EW precision physics

Radiative corrections to W-boson propagator (e.g. for $\mu^- \to \nu_\mu W^- \to \nu_\mu e^- \bar{\nu}_e$):

W W

 $\Delta \rho \sim m_t^2 / M_W^2$ $(\Delta r)_{nl} \propto \ln M_H^2 / M_Z^2$

Masses of top, W and Higgs are bounded by

$$
M_W^2\left(1-\frac{M_W^2}{M_Z^2}\right)=\frac{\pi\alpha}{\sqrt{2}G_F}\left(1+\varDelta r\right),\quad \varDelta r=\varDelta\alpha+\frac{s_W}{c_W}\varDelta\rho+\left(\varDelta r\right)_{nl}
$$

 M_{z} , G_F and α are known with high precision:

~

- $M_z = 91.1876 \pm 0.0021$ GeV
- G_F = 1.166367(5) \times 10⁻⁵ GeV⁻²
- α = 1/137.035999679(94)

Measuring precisely masses m_t and M_w using (*) M_H can be extracted! Drawback: dependence on Higgs mass is weak (logarithmic)

Global SM fit to EW precision data

Gfitter package used for the global fit (http://project-gfitter.web.cern.ch/project-gfitter/) There is a set of N_{exp} precisely measured observables described by N_{exp} theoretical expressions $-$ those are functions of N_{mod} model parameters

 $m_t = 175.8^{+2.8}_{-2.8}$ GeV, $M_w = 80.360 \pm 0.011$ GeV From the global fit (measured m_t/M_w excluded):

Top mass and EW precision physics

- SM-like Higgs boson discovery at 125.7 ± 0.4 GeV is compatible with global EW data at $1.3 \sigma (p = 0.18)$
- Contours of 68% and 95% CL obtained from scans of fits with fixed variable pairs M_W vs m_t
- Dependence of EW observables on M_H is only logarithmic!

- The blue and grey allowed regions are the results of the fit including and excluding the M_H measurements, respectively.
- The horizontal and vertical bands indicate the 1 σ regions of the M_W and m_t measurements.

Vacuum stability and top mass

Running quartic Higgs coupling

Higgs quartic coupling

Higgs boson looks to be firmly established by LHC \Rightarrow Vacuum has nonzero Higgs field component (Higgs condensate) What can be said about its stability?

Higgs potential:

$$
V(\phi) = \mu^{2} \phi^{*} \phi + \lambda (\phi^{*} \phi)^{2}, \quad \phi = \frac{\phi_{1} + i\phi_{2}}{\sqrt{2}}
$$

For $\mu^{2} < 0$ and $\lambda > 0$

 \Rightarrow due to interactions λ is running constant – scale dependent (as mass):

$$
\lambda(\mu_R) = \frac{G_F M_H}{\sqrt{2}} + \Delta\lambda(\mu_R) \quad \Rightarrow \text{ What will happen if } \lambda < 0 ?
$$

 $\Delta\lambda$ is calculated in two loop approximation – the most important contribution: due to QCD and top Yukawa interactions.

Top quark mass and instability of vacuum

High precision top mass is a fundamental input to the understanding of the SM, has cosmological implications.

Renorm group Higgs quartic coupling $\lambda(\mu)$ evolution – steep decrease due to 1-loop top corrections \Rightarrow slope of λ strongly depends on m_t .

At μ =10¹⁰-10¹¹ GeV: change of λ sign \Rightarrow vacuum is only in a local minimum \Rightarrow meta-stability of vacuum.

SM assumed and evolution at NNLO

Dashed lines 3σ bands for m_t (gray), $\alpha_{\sf s}$ (red) and M_H (blue)

7/30/2014 S. Tokar, top quark physics, HASCO 2014 18 Coupling λ closed to 0 at $\Lambda_{\rm P}$ (Planck scale)!

Top quark mass and instability of vacuum

Assuming SM – no other scale between $\Lambda_{\text{EWSB}} \sim 100$ GeV and $\Lambda_{\text{p}} \sim 10^{19}$ GeV M_t =173.1 \pm 0.6 GeV, $\alpha_s(M_z)$ = 0.1184 \pm 0.0007 and M_h =125.7 \pm 0.3 GeV It looks we live in the world with meta-stable vacuum!

The condition of absolute stability up to the Planck scale:

$$
M_{H}[\text{GeV}] > 129.4 + 1.4 \left(\frac{m_{t}[\text{GeV}] - 173.1}{0.7}\right) - 0.5 \left(\frac{\alpha_{s}(M_{Z}) - 0.1184}{0.0007}\right) \pm 1.0_{th}
$$

$$
m_{t} < (171.36 \pm 0.46)\text{GeV}
$$

What does it mean metastability?

From recent m_t and M_H measurements:

 \Rightarrow the SM Higgs potential develops an instability at scales well below $\,M_{P}\hskip-2.5pt:$

$$
\log_{10} \frac{A_I}{\text{GeV}} = 11.0 + 1.0 \left(\frac{M_H}{\text{GeV}} - 125.7 \right) - 1.2 \left(\frac{m_t}{\text{GeV}} - 173.34 \right) + 0.4 \frac{\alpha_s (M_Z) - 0.1184}{0.0007}
$$

 Λ _I = the scale at which the effective Higgs quartic λ _{eff} becomes negative - Λ ² 10¹¹ GeV.

If it is true (Higgs potential is unstable) \Rightarrow

the Higgs field *h* can tunnel from the EW vacuum to the true vacuum at large field values

- lifetime for quantum tunneling turns out to be (much) larger than the age of the Universe, rendering our universe metastable.
- Question of M_{H} , m_t uncertainty is of a great importance ...

Implication for the inflation

Fluctuations in Higgs field during inflation are set by Hubble scale *H*:

$$
\delta h = \frac{H}{2\pi}, \qquad H^2 = \frac{\pi}{16} M_P^2 \Delta_R^2 r
$$

 $\Delta_{\sf R}$ = amplitude of curvature perturbations measured by Planck ($\Delta_{\sf R}^2$ = $\ 2.21\times\!10^{\text{-9}})$ $r \equiv$ tensor-scalar ratio measured by BICEP2

– measurement of BICEP2 [*arXiv:1403.3985*] indicates:

$$
H = 1.0 \times 10^{14} \,\text{GeV} \sqrt{\frac{r}{0.16}}, \quad r \approx 0.2
$$

When $H > A_I$ (instability scale), the likelihood that \bm{h} fluctuates to the unstable region of the potential during inflation will be sizable [*arXiv:1404.5953*].

Fate of universe: different scenarios of the post-inflationary vacuum evolution – from "our universe is extremely improbable" to "the additional vacuum does not appear to preclude existence of our universe".

Conclusions

Top quark is a special fundamental particle – studying its properties we can:

- \Box test the Standard model,
- \Box to reveal a possible new physics,

 \Box to understand better global questions concerning the Universe fate

Cross Section of Top Quark production

t t Production Cross Section

Top quark X-section: Experiment vs Theory

Factorization theorem:

experiment

$$
\widehat{(\sigma)} = \sum_{i,j} dx_i dx_j F_i^{(1)}(x_i,\mu_F) F_j^{(2)}(x_j,\mu_F) \widehat{\sigma}_{ij}^{(s)}(s;\mu_F,\mu_R)
$$

Parton Distribution Functions (PDFs)

 $F_i^{(\lambda)}\bigl(x_\lambda, \mu_{\scriptscriptstyle F}^{}\bigr)$ = probability density to observe a parton \bm{i} with longitudinal momentum fraction x_{λ} in incoming hadron λ , when probed at a scale $\mu_F^{}$ $_{\lambda }$, μ

 μ_F = factorization scale (a free parameter) - it determines the proton structure if probed (by virtual photon or gluon) with $2 \frac{2}{3}$ $q^2 = -\mu_F^2$

 μ_R = renormalization scale – defines size of strong coupling constant

```
Usual choice: \mu_F = \mu_R = \mu \in (m_t/2, 2m_t)
```


theory

t t Production Cross Section

The LO top quark pairs cross section (Born term):

$$
d\hat{\sigma} = \frac{1}{2\left(p_1 + p_2\right)^2} \frac{d^3 p_3}{\left(2\pi\right)^3 2E_3} \frac{d^3 p_4}{\left(2\pi\right)^3 2E_4} \delta\left(p_1 + p_2 - p_3 - p_4\right) \overline{\left|M\right|^2}
$$

Quark –antiquark annihilation

7/30/2014 S. Tokar, top quark physics, HASCO 2014 26 2 2 ² 2 2 1 3 2 3 2 2 1 2 1 2 8 4 2 9 *t s p p p p ^m M qq tt p p p p* 4 ² ² 1 2 1 3 2 3 2 2 4 ² ⁴ 1 3 2 3 1 2 4 2 2 2 1 2 1 2 1 3 2 3 8 4 24 9 4 4 *s t t p p M gg tt p p p p p p p p m p p ^m p p p p p p p p* Gluon fusion Experiment: LO tt-bar Xsec is not sufficient! Higher orders are needed Averaged over initial and summed over final color and spin state

t + Production Cross Section

Theory for top X-section is at NNLO:

Xsec is expanded into series of strong coupling constant:

$$
\sigma_{ij}\left(\beta,\frac{\mu^2}{m^2}\right) = \frac{\alpha_s^2}{m^2} \left\{\sigma_{ij}^{(0)} + \alpha_s \left[\sigma_{ij}^{(1)} + L\sigma_{ij}^{(1,1)}\right] + \alpha_s^2 \left[\sigma_{ij}^{(2)} + L\sigma_{ij}^{(2,1)} + L^2\sigma_{ij}^{(2,2)}\right] + O\left(\alpha_s^3\right)\right\}
$$

LO ~ α_s^2 , NLO ~ α_s^3 , NNO ~ α_s^4 ... $\beta = \sqrt{1 - 4m^2/s}$ L = big log term

NLO: virtual and real corrections are added to LO

Virtual corrections:

Taking $\rm |A+B|^2$ = ...+ $\rm AB^*$ +..., $\rm AB^*$ ~ $\rm \alpha_S^{-3}$

Real corrections – with real gluons $({\sim \alpha_{\rm S}^{-3}})$:

A few top Cross Section issues

Higher order real and virtual corrections exhibit IR and UV divergences:

 \checkmark IR singularity: $E_k \to 0$ and $1-\beta_p \cos \theta \to 0 \implies$ cancelled when Xsec of virtual and real emission are summed also mass singularities are cancelled \Rightarrow Cancelation is not full \Rightarrow presence of big logs (L) in Xsec terms !

 \checkmark UV singularities in loops (\checkmark) are handled by renormalization.

In real we observe tt decay products not $~^{tt}$ Factorization is used based on the narrow width approximation:

- \checkmark polarized top quarks are produced on mass shell
- \checkmark polarized on-shell top quarks decay Narrow width app. vs direct $pp \rightarrow WWbb$:

For LHC 7TeV/DIL: Xsec(fb) 837 vs 841 also done for 14 and 1.96TeV

...an another Higgs restriction plot

