TGC & QGC: With a Light Higgs Boson SM@LHC, 2014 Tao Han (PITT PACC) Pittsburgh Particle physics, Astrophysics and Cosmology Center

PHYSICS IS DEFINED AT A SCALE

At (very) low energies: QED: U(1)_{em} gauge theory, the most accurate theory in science Anomalous magnetic dipole moment (g-2): $a_e = 0.00115965218073(28)$ $\Rightarrow \alpha^{-1} = 137.035999173(35)$ $a_\mu = 0.00116592080(63)$

2

* Weak force well measured at low energy: Charged current: W[±] $-\frac{G_F}{\sqrt{2}} \bar{p}On \bar{e}O'\nu$ $\overline{\nu}_e$ Neutral current: Z⁰ $-\frac{G_F}{\sqrt{2}} \bar{\nu}_{\mu} \mathcal{O} \nu_{\mu} \bar{e} \mathcal{O}' e$ $G_{\mu} = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$ $\Rightarrow v = 1/(\sqrt{2}G_{\mu})^{1/2} = 246.22 \text{ GeV}.$ Which defines a new physical scale: The EW Scale. * Near the EW scale: QED + weak currents \rightarrow SU(2)_L \otimes U(1)_Y gauge theory $\alpha, G_F \rightarrow g_1, g_2, v$ [trade to $M_Z, \alpha(M_Z), G_F$] * At higher energies \rightarrow new physics!?

THE YANG-MILLS GAUGE THEORY Non-Abelian local gauge theory SU(2) $\mathcal{L}_{W4} = \frac{g^2}{4} \left[W^+_{\mu} W^+_{\nu} W^-_{\sigma} W^-_{\rho} \mathcal{Q}^{\mu\nu\rho\sigma} - 2W^+_{\mu} W^3_{\nu} W^3_{\sigma} W^-_{\rho} \mathcal{Q}^{\mu\rho\nu\sigma} \right]$ $\dot{\mathcal{Q}}_{\mu
u
ho\sigma}\equiv 2g_{\mu
u}g_{
ho\sigma}-g_{\mu
ho}g_{
u\sigma}-g_{\mu\sigma}g_{
u
ho}, \ \mathbf{w}^+_{\mu}$

Transversely polarized gauge bosons: $\epsilon_T^{\mu} = (0, \cos\theta \cos\phi, \cos\theta \sin\phi, \sin\theta)$ $\mathcal{A}_{W_T W_T} (2 \to 2) \sim \mathcal{O}(g^2)$

Well behaved, well predicted!

But, W/Z are massive! Longitudinally polarized gauge bosons: $\epsilon_L^{\mu} \approx p^{\mu}/M_W$ at $M_W/E \ll 1$. Model-independent! Thus lead to "bad high energy behavior": $A(f\bar{f} \rightarrow W_L W_L) \sim m_f \sqrt{s}/v^2$ $A(W_L W_L \rightarrow W_L W_L) \sim \epsilon_{1L} \cdot \epsilon_{2L} \epsilon_{3L} \cdot \epsilon_{4L}$

Naively, $A(W_L W_L \rightarrow W_L W_L) \sim g^2 (p^2)^2 / M_W^4 \sim g^2 s^2 / M_W^4$, **EVSB & THE HIGGS BOSON:**

 $\begin{cases} + O(E^4) + O(E^2) \end{cases}$

= O(1)

 $\int_{f} (1+H/v) m_f \bar{\psi}_f \psi_f$ Model-dependent! $(v+H)^2 g^2 V^{\mu} V_{\mu}$

- H

* Consistent perturbative theory up to $\text{TeV}, \dots M_{\text{pl}}(?)$

THE PARAMETERIZATIONS FOR NEW PHYSICS

Triple Gauge-boson Couplings (TGC)

(1)A conventional parameterization: (Hagiwara et al., 1986) Most general structure of Lorentz, EM gauge invariance.

 $\frac{\mathcal{L}_V}{g_V} = ig_1^V \left(W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu} \right) + i\kappa_V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu}$ + $i \frac{\lambda_V}{m_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} V^{\nu\lambda} - g_4^V W^{\dagger}_{\mu} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu})$ $+ g_{5}^{V} \epsilon^{\mu\nu\lambda\rho} \left(W_{\mu}^{\dagger} \partial_{\lambda} W_{\nu} - \partial_{\lambda} W_{\mu}^{\dagger} W_{\nu} \right) V_{\rho}$ Cons: $+ i\tilde{\kappa}_V W^{\dagger}_{\mu} W_{\nu} \tilde{V}^{\mu\nu} + i \frac{\lambda_V}{m_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} \tilde{V}^{\nu\lambda}.$

In the SM at tree level:

$$g_1^V = \kappa_V = 1,$$

$$\lambda_V = \tilde{\lambda}_V = \tilde{\kappa}_V = g_4^V = g_5^V = 0.$$

Pros:

- General
- Historical

- Power counting unclear
- Violate unitarity (soon)
- Not gauge invariant

Deviations from the SM often called "anomalous couplings". (The operators: g_5^Z is P-odd, g_4^V , $\tilde{\lambda}_V$, $\tilde{\kappa}_V$ are CP-odd, $\lambda's$ dim-6.)

How large do we expect the deviations to be? See later ...

(2). Non-linear realization of gauge symmetry: $\mathcal{L}_0 = \frac{(h+v)^2}{2} Tr[D^{\mu}U^{\dagger}D^{\mu}U], \quad U = exp(i\omega^i\tau^i/v)$ $\mathcal{L}_4 = \ell_4 (\frac{v}{\Lambda})^2 [TrV^{\mu}V^{\nu}]^2, \quad V^{\mu} = (D^{\mu}U)U^{\dagger},$ Appelquist, Bernard, 1980 $\mathcal{L}_5 = \ell_5 (\frac{v}{\Lambda})^2 [TrV^{\mu}V_{\mu}]^2.$ Appelquist, Berr Longitano, 1980 Another convention: $\alpha_{4,5} = \ell_{4,5} (v/\Lambda)^2$. "Naturally speaking", $\Lambda \sim 4\pi v$, $\ell_{4,5} \sim \mathcal{O}(1)$. Remarks: This is equivalent to integrate out h (as a heavy singlet), which is inappropriate in light of the Higgs discovery.

(3). Linear realization of gauge symmetry:

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

Buchmuller, Wyler, 1986 Leung, Love, Rao, 1986 Hagiwara et al. 1993 Grzadkowski et al. 2010

B-L conserving, CP even: 59 operators at dim-6. e.g. Higgs & TGC:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} , \quad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi ,$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi , \quad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) ,$$

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger} \Phi) (\bar{L}_{i} \Phi e_{R_{j}}) , \quad \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger} \Phi) (\bar{Q}_{i} \Phi d_{R_{j}}) ,$$

$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) , \quad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) ,$$

$$\mathcal{O}_{WWW} = \operatorname{Tr} [\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho}] .$$
(3)

$$\Delta \kappa_{\gamma} = \frac{g^2 v^2}{8\Lambda^2} \left(f_W + f_B \right), \ \lambda_{\gamma} = \lambda_Z = \frac{3g^2 M_W^2}{2\Lambda^2} f_{WWW},$$
$$\Delta g_1^Z = \frac{g^2 v^2}{8c^2\Lambda^2} f_W, \ \Delta \kappa_Z = \frac{g^2 v^2}{8c^2\Lambda^2} \left(c^2 f_W - s^2 f_B \right).$$
(5)

"Naturally speaking", $\Lambda \sim 4\pi v$, $f_n \sim \mathcal{O}(1)$, $\Delta \kappa \sim 10^{-3}$.

Eboli et al., 2006, 2012. Quartic couplings w/o modifying triple couplings at dim-8: $\frac{f_0}{\Lambda^4} \left[(D_\mu \Phi)^\dagger D_\nu \Phi \right] \times \left[(D^\mu \Phi)^\dagger D^\nu \Phi \right]$ $\frac{f_1}{\Lambda^4} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] \times \left[(D_\nu \Phi)^\dagger D^\nu \Phi \right]$

leading to interactions like

$$\begin{split} \mathcal{O}_{0}^{WW} &= g^{\alpha\beta} g^{\gamma\delta} \left[W^{+}_{\alpha} W^{-}_{\beta} W^{+}_{\gamma} W^{-}_{\delta} \right] , \qquad \mathcal{O}_{1}^{WW} = g^{\alpha\beta} g^{\gamma\delta} \left[W^{+}_{\alpha} W^{+}_{\beta} W^{-}_{\gamma} W^{-}_{\delta} \right] , \\ \mathcal{O}_{0}^{WZ} &= g^{\alpha\beta} g^{\gamma\delta} \left[W^{+}_{\alpha} Z_{\beta} W^{-}_{\gamma} Z_{\delta} \right] , \qquad \mathcal{O}_{1}^{WZ} = g^{\alpha\beta} g^{\gamma\delta} \left[W^{+}_{\alpha} W^{-}_{\beta} Z_{\gamma} Z_{\delta} \right] , \\ \mathcal{O}_{0}^{ZZ} &= \mathcal{O}_{1}^{ZZ} \equiv \mathcal{O}^{ZZ} = g^{\alpha\beta} g^{\gamma\delta} \left[Z_{\alpha} Z_{\beta} Z_{\gamma} Z_{\delta} \right] , \end{split}$$

"Naturally speaking", dim-8 operators should be suppressed by $(v/\Lambda)^2 \sim 1/16\pi^2$.

THE TEST OF EW THEORY

Precision EW physics stared at LEP-I: (and on ...)

M_w [GeV] 80.46 0.3 68% and 95% CL fit contours for U=0 $sin^{2}(\theta_{eff}^{I}) \pm 1\sigma$ 68% and 95% CL fit contours $(SM_{ref}: M_{H}=126 \text{ GeV}, m_{r}=173 \text{ GeV})$ w/o M_w and sin²(θ_{eff}^{I}) measurements 80.44 0.2 **Present SM fit Present fit** 80.42 **Prospects for LHC** Present uncertainties **Prospects for ILC/GigaZ Prospects for LHC** 0.1 80.4 Prospects for ILC/GigaZ **Present measurement** ILC precision 80.38 0 LHC precision $M_w \pm 1\sigma$ 80.36 -0.1 **SM Prediction** $M_{\rm H} = 125.7 \pm 0.4 \, {\rm GeV}$ 80.34 $m_{t} = 173.20 \pm 0.87 \text{ GeV}$ -0.2 80.32 G fitter 👪 G fitter SM -0.3 └─ -0.3 80.3 0.2311 0.2312 0.2313 0.2314 0.2315 0.2316 0.2317 0.2318 0.2319 -0.2 -0.1 0 0.1 0.2 0.3 0.231 $sin^{2}(\theta_{eff}^{I})$ S

"Custodial SU(2) c symmetry" (only broken by $g_Y \& m_U - m_D$)

arXiv:1310.6708

Longitudinal W's sensitive to new physics. Crucial: observe the SM $W_L W_L$ scattering:

Duric (CMS)

Significance	30	5σ
SM EWK scattering discovery	$75 {\rm fb}^{-1}$	$185 { m fb^{-1}}$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFTR13006

• The existence of a light, weakly coupled Higgs boson unitarize the amplitude:

New physics still possible, but be "delayed"
 ~ (g²/16π²) s/v²

• For 1 TeV new physics (v/1 TeV)² ~ 6%!

Representative examples: Different channels are sensitive to different physics:

▶ I = 0: resonant in W^+W^- and ZZ scattering

- ▶ I = 1: resonant in W^+Z and W^-Z scattering
- ▶ I = 2: resonant in W^+W^+ and W^-W^- scattering

Type of resonance	LHC 300 fb^{-1}		LHC 3000 fb^{-1}	
	5	$95\%~{ m CL}$	5	$95\%~{ m CL}$
scalar	$1.8 { m TeV}$	$2.0 { m TeV}$	$2.2 { m TeV}$	$3.3 { m TeV}$
vector	$2.3 { m TeV}$	$2.6 { m TeV}$	$2.9 { m TeV}$	$4.4 { m TeV}$
tensor f	$3.2 { m TeV}$	$3.5 { m TeV}$	$3.9 { m TeV}$	$6.0 { m TeV}$

OVERALL

* With the Higgs discovery, EW theory is healthier than ever, valid from EW scale possibly to M_{PL} $\widehat{}_{0}$ 10^{-3}

But the Higgs sector fine-tuned: need more understanding.

• Gauge/Higgs weakly coupled, e.g. TGC etc. SM-like. $W_L W_L$ still robust test for EWSB: compositeness ... But sensitivity delayed: $g_0/4\pi$.

* Perhaps, it's more likely to observe resonant states: W[±]', Z'; H[±], A⁰; ... than aTGC (W[±]', Z'), aQGC (Higgs-like)