

Monday, April 7, 14

BOOSTED TOPOLOGIES

2

- Many models of new physics couple to the top quark
- At the LHC top-quarks are produced at high boost (p_T/m > 2)
- For these top quarks the decay products will become more collimated...

Separation for a two-body decay:

 $\frac{m_j^2}{p_{T,j}^2} \sim z(1-z) \quad R_{j_1 j_2}^2 \quad \text{with} \quad z = \frac{\min p_{T,j_i}}{p_{T,j}}$

- ... and can/will merge into a single jet in the detector
- The fraction of such events will increase for the 13 TeV LHC run

ANALYSIS APPROACH

- Start with **large-R** (R=0.8..1.8) and analyze the substructure
- General purpose tools (= *ingredients*):
 - Find the hard substructure: trimming, mass-drop, filtering, pruning, ...
 - Discriminate top vs non-top: masses, splitting-scales, n-subjettiness, ...
- **Taggers** are (usually) **combination** of these tools
 - example: mass-drop + filtering + masses (+ some combinatorics) = HEPTopTagger

3

- Goals:
 - Improve **mass resolution** by reducing pile-up, underlying event, soft radiation
 - Identify hadronic top candidate

PERFORMANCE STUDIES

- Distinguishes symmetric heavy particle decays from QCD radiation:
 - For a heavy-particle decay:

$$\sqrt{d_{12}} \approx m_{\mathrm{top}/2} \sqrt{d_{23}} \approx m_{\mathrm{W}/2}$$

• QCD radiation: smaller

N-SUBJETTINESS

1011.2268 CMS PAS JME-13-007 ATLAS-CONF-2013-084

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

- Idea: Quantify compatibility with 0 1/2/3-subjet hypothesis
- Lower $tau_n = better agreement$ 0
- Ratio tau₃/tau₂ for top tagging 0

0.6

η

0.8

6

CMSTOP TAGGER

CMS PAS JME-13-007

0806.0848

1204.2488

- Start with CA, R=0.8 large-R jets (p_T > 350 GeV)
- Repeatedly **uncluster** large-R jet
 - drop low-p_T (wrt/ large-R jet) subjets and close-by subjets
 - until **3 or 4 subjets** are found

- Selection criteria:
 - mass of sum has: [140,250] GeV
 - **minimal pairwise mass** of three leading subjets > 50 GeV
 - $(tau_3/tau_2 < 0.55)$

HEPTOPTAGGER

- Identify hadronically decaying top quarks with p_T > 200 GeV
- Start with CA, R=1.5 jets
- Identify top quark decay via mass ratios:

(a) initial fat jet

(b) fat jet after first unclustering step

(c) fat jet after the last unclustering step

(d) re-clustered constituents of the triplet of jets A, B and C from the previous step using a smaller distance parameter

(e) the five leading subjets found in the previous step

(f) constituents of the five jets from the previous step re-clustered into exactly three jets for testing mass ratios

CMS & HEP TAGGERS INDATA ATLAS-CONF-2013-084

Monday, April 7, 14

SHOWER ATLAS-CONF-2014-003 1211.3140 1211.3140 DECONSTRUCTION 1402.1189

• Assign signal and background probabilities to large-R jet:

$$\mathcal{P}(\{k\}_N, \text{model}) = \sum_h \mathcal{P}(\{k\}_N, \text{model}, h)$$

• Obtain likelihood:

 $\chi = \frac{\mathcal{P}(\{k\}_N, \text{signal})}{\mathcal{P}(\{k\}_N, \text{background})}$

- Start with AntiKt R=1.0 large-R jet and recluster with CA, R=0.2 (Microjets)
- Use Matrix element + parton shower with Sudakov factors to generate possible event histories

10

CMS ROCS

CMS PAS JME-13-007

ATLAS ROCS

ATLAS-CONF-2013-084 ATLAS-CONF-2014-003

Figure 7: Comparison of expected top jet tagging efficiency and light quark/gluon jet rejection. All substructure taggers and scans use trimmed anti- $k_t R = 1.0$ jets, except the HEPTopTagger (HTT) that uses C/A R = 1.2. The same $Z' \rightarrow t\bar{t}$, $m_{Z'} = 1.75$ TeV signal samples and multijet background samples and selection are used for all taggers. Systematic uncertainties are not considered for any of the algorithms.

PHYSICS RESULTS

RESONANCES

1309.2030

ATLAS-CONF-2013-052

- Search for new particles decaying to a **pair** of **top** quarks
- Look for an **excess** over SM production in the **di-top** invariant **mass** distribution
- Benchmark models:
 - Z'boson
 - Leptophobic topcolor model
 - Phys. Rev. D 49 (1994) 4454
 - Kaluza-Klein Gluon (KKG)
 - Colored resonance
 - Randall-Sundrum extra dimension models

14

• Phys. Rev. D 76 (2007) 115016

RESONANCES II

1309.2030

ATLAS-CONF-2013-052

- CMS Lepton+Jets (full 2012 data: 1309.2030)
 - **Resolved**: electron/muon + missing energy + 2 jets (AntiKt, R=0.5) + *b*-tags
 - **Boosted**: electron/muon + missing energy + 1 CMS-top-tagged jet + optional *b*-tags
 - Only combined Lepton+Jets Boosted/Resolved + All Hadronic limit
- CMS All Hadronic (full 2012 data: 1309.2030)
 - 2 CMSTopTagger candidates

- ATLAS Lepton+Jets (14 fb⁻¹: ATLAS-CONF-2013-052)
 - **Resolved:** electron/muon + missing energy + 3-4 jets (AntiKt, R=0.4) +1 *b*-tag
 - **Boosted:** electron/muon + missing energy + 1 jet (AntiKt, R=0.4) + 1 trimmed AntiKt R=1.0 jet with cuts on kT-splitting scale + 1 *b*-tag
 - Only combined Lepton+Jets Boosted/Resolved limit
- ATLAS All Hadronic (full 2011:1211.2202, 2012 results not public yet)
 - 2 HEPTopTagger candidates or 2 templatemethod candidates + 2 *b*-tags

Monday, April 7, 14

RESONACES IV

ATLAS-CONF-2013-052

1309.2030

CMS, full 2012 (lepton+jets and all hadronic) CMS, 19.7 fb⁻⁺, √s = 8 TeV 10² Upper limit on $\sigma_{z'} \times B(Z' \rightarrow t\bar{t})$ [pb] ----- Expected (95% CL) Observed (95% CL) 10 Z' 1.2% width ±1σ Expected ±2σ Expected

1.5

ATLAS, 14 fb⁻¹, lepton+jets

3

M_{z'} [TeV]

2.5

2

10⁻¹

10⁻²

10⁻³

0.5

TOP-QUARK PARTNERS

18

1312.2391

- Di-top **resonance** searches are the main **testing ground** for boosted-top techniques
- Example for another analysis using boosted tops:
 - Search for exotic **top-quark partners** with **charge 5/3** in the same-sign dilepton final state
 - **Pair** production

• Decay to **tW**

TOP-QUARK PARTNERS II

19

1311.7667 1312.2391

- The main analysis variable is H_T = sum of selected jet and lepton p_T
- **Defaults** jets are reconstructed with **AntiKt** (**R=0.5**)
- If there are CA (R=0.8) top (CMSTopTagger) or W jets these are used for calculation of H_T instead
- Improves limit by 10-20% for masses from 800
 GeV to 1 TeV
- The CMSTopTagger is also used as input for a BDT in a search for vector-like T quark with charge 2/3

CONCLUSIONS

- Boosted reconstruction techniques aim to improve the **mass resolution** and **identify** top-quark decays using the **substructure** of large-R jets
- Many different boosted-top reconstruction techniques are being tested by ATLAS and CMS
- Top-tagging is essential for **boosted resonances** and is starting to play a role for other searches for BSM physics

20

BACKUP

21

JET CLUSTERING

- Two approaches:
 - **Cone based** Find stable axes of particles flow (ie. SisCone: 0704.0292)
 - **Sequential** Pairwise combination of clusters according to a distance measure:

$$k_T \qquad d_{j_1 j_2} = \frac{\Delta R_{j_1 j_2}^2}{D^2} \min \left(p_{T, j_1}^2, p_{T, j_2}^2 \right) \qquad d_{j_1 B} = p_{T, j_1}^2$$

Cambridge/Aachen
$$d_{j_1 j_2} = \frac{\Delta R_{j_1 j_2}^2}{D^2} \qquad y_{j_1 B} = 1$$

anti- $k_T \qquad d_{j_1 j_2} = \frac{\Delta R_{j_1 j_2}^2}{D^2} \min \left(\frac{1}{p_{T, j_1}^2}, \frac{1}{p_{T, j_2}^2} \right) \qquad d_{j_1 B} = \frac{1}{p_{T, j_1}^2}.$

JET CLUSTERING hep-ex/0005012 II 0802.1189

- Important Properties:
 - Infrared safety
 - Collinear safety
- Most commonly used is AntiKt
 - R=0.5 and 0.7 for CMS
 R=0.4 and 0.6 for ATLAS
 - Resilient, circular boundaries
- For large-R jet studies CA and kT are very comm
 - Substructure can be better interpreted in terms of QCD

GROOMING

1306.4945

- Idea: Start with **large-R jet** (R=0.8-1.8) and **remove** constituents from
 - pile-up
 - **rest** of the event
- Arrive at the **mass** of the **initial** hard particle (Z, t, Higgs,..)
- Different techniques:
 - Mass Drop
 - Filtering
 - Trimming
 - Pruning

MASS DROP

1306.4945 0802.2470

• Mass Drop:

- Then consider j1, j2 as interesting substructure and **exit** the loop
- Else: **Repeat** with j1

• Take constituents and **re-cluster** using the CA algorithm and a **smaller** distance parameter:

$$R_{\text{filt}} = \min[0.3, \Delta R_{j_1, j_2}/2]$$

- Usually use j1 and j2 resulting from **mass-drop** as input
- Keep **n-leading** (in pT) subjets (typically 3..5)
- Dynamic filtering radius increases sensitivity to collimated decays (high pT)

0912.1342

Events / 10 Gev

100

- Radiation from..
 - pile-up
 - multi-parton interaction
 - initial-state radiation
- .. is typically **softer** than de
- Recluster using kT algori
- **Remove** all subjets with p

27

200

250

300

350

Jet Mass [GeV]

(b) anti- k_t , R = 1.0, trimmed

- Additional **veto** on **wide-angle** radiation
- Rerun kT/CA clustering and apply criteria at each stage
- If one of $p_T^{j_2}/p_T^{j_1+j_2} > z_{cut}$ or $\Delta R_{j_1,j_2} < R_{cut} \times (2m^{jet}/p_T^{jet})$ is satisfied: merge
- Otherwise: **discard** j2 and **continue**

HTT ALGORITHM

0910.5472 1006.2833

Top

$$0.2 \arctan \frac{m_{13}}{m_{12}} < 1.3 \text{ and } R_{min} < \frac{m_{23}}{m_{123}} < R_{max}$$

$$R_{min}^2 \left(1 + \left(\frac{m_{13}}{m_{12}}\right)^2\right) < 1 - \left(\frac{m_{23}}{m_{123}}\right)^2 < R_{max}^2 \left(1 + \left(\frac{m_{13}}{m_{12}}\right)^2\right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35$$

$$R_{min}^2 \left(1 + \left(\frac{m_{12}}{m_{13}}\right)^2\right) < 1 - \left(\frac{m_{23}}{m_{123}}\right)^2 < R_{max}^2 \left(1 + \left(\frac{m_{12}}{m_{13}}\right)^2\right) \text{ and } \frac{m_{23}}{m_{123}} > 0.35.$$

Monday, April 7, 14

TEMPLATE OVERLAP METHOD 1211.2202 1006.2035 1212.2977 1112.1957

- Calculate templates (sets of "n" four-momenta which satisfy the kinematic constraints of the decay products of a boosted massive jet)
- Test the agreement of the jet constituents with each signal template
- Important difference to MEM: no background hypothesis

ATLAS RESONANCES

ATLAS-CONF-2013-052

	Resolved selection		Boosted selection	
	yield impact [%]		yield impact [%]	
Systematic Uncertainties	total bkg.	Z'	total bkg.	Ζ'
Luminosity	2.9	4	3.3	4
PDF	2.9	5	6	2.9
ISR/FSR	0.2	-	0.7	-
Parton shower and fragm.	5	-	4	-
<i>tī</i> normalization	8	-	9	-
$t\bar{t}$ EW virtual correction	2.2		4	-
tt Generator	1.5	_	1.6	-
W+jets $b\bar{b}+c\bar{c}+c$ vs. light	0.8	-	1.0	
W+jets $b\bar{b}$ variation	0.2	-	0.4	-
W+jets c variation	1.1		0.6	-
W+jets normalization	2.1	-	1.0	-
Multi-Jet norm, <i>e</i> +jets	0.6		0.3	-
Multi-Jet norm, μ +jets	1.8	-	0.3	-
JES, small-radius jets	6	2.2	0.7	0.5
JES+JMS, large-radius jets	0.3	4	17	3.3
Jet energy resolution	1.6	0.4	0.6	0.7
Jet vertex fraction	1.7	2.3	2.1	2.4
<i>b</i> -tag efficiency	4	1.8	3.4	6
<i>c</i> -tag efficiency	1.4	0.3	0.7	0.9
Mistag rate	0.7	0.3	0.7	0.1
Electron efficiency	1.0	1.1	1.0	1.0
Muon efficiency	1.5	1.5	1.6	1.6
All systematic uncertainties	31 14	9	22	9

CMS RESONANCES

Table 1: Constraints used in the likelihood maximization. The $M_{t\bar{t}}$ distributions of the boosted channels are combined into a single joint likelihood, imposing consistency of the various background and signal components.

1309.2030

	Resolved	Boosted	Boosted		
	Semi-	Semi-	All-		
	Leptonic	Leptonic	Hadronic		
Constraints on normalization					
Luminosity [41]	2.6%	2.6%	2.6%		
Pileup	6%	6%	6%		
tt [42]	-	15%	15%		
Parton distribution functions [43]	1σ	1σ	1σ		
Single top	-	50%	-		
W+light-flavor jets	-	50%	-		
W+heavy-flavor jets	-	100%	-		
Z+ jets	-	100%	-		
Lepton selection	0.5-3.0%	0.5-3.0%	-		
Top-tagging efficiency	-	-	9%		
Constraints on shape					
tt renormalization,					
factorization and	-	variation by $\times 2$ and $\times 0.5$			
matching scales					
Jet energy scale	1–6%	1–6%	1–6%		
Jet energy resolution	8–10%	8–10%	8–10%		
b-tagging efficiency	2-8%	2-8%	-		
b-tagging mis-ID	-	20%	-		
Top-tagging mis-ID	-		5–20%		
Signal and	1σ				
background pdf	10	-			

Monday, April 7, 14