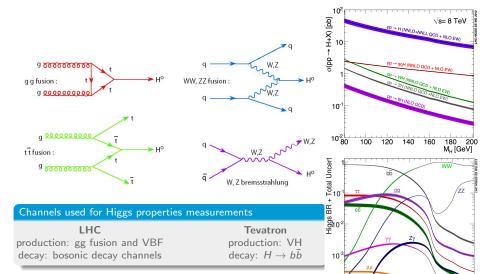
Measurement of the Higgs boson mass, width and spin-CP quantum numbers at LHC and Tevatron

Standard Model at LHC Madrid (Spain, 8-11 April 2014)

Mykhailo Dalchenko (LLR, Ecole Polytechnique & CNRS/IN2P3)

on behalf of the ATLAS, CMS, CDF and D0 collaborations

April 8, 2014



- A new boson compatible with the SM Higgs was discovered at the LHC in 2012
- Tevatron also sees an excess of events in the same mass range
- The measurements of this boson properties probe the SM
 - Mass
 - Spin and CP-numbers
 - Width

Higgs boson production and decays

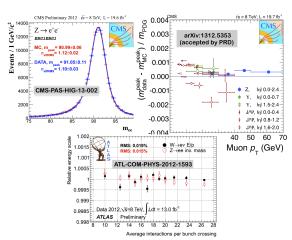
Outline

- 1 Higgs boson mass
- 2 Spin and CP quantum numbers
- 3 Higgs boson width

Outline

- 1 Higgs boson mass
- 2 Spin and CP quantum numbers
- 3 Higgs boson width

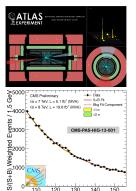
Higgs boson mass measurement strategy at the LHC

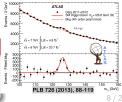

- Higgs boson mass is a fundamental parameter
 - Not predicted by theory
 - Once the Higgs boson mass is measured then SM predictions are fully determined
 - This is the first precision measurement of the new boson properties
- Measurement strategy
 - Use high resolution channels: $\gamma\gamma$ and 4ℓ
 - The mass is obtained from a likelihood fit performed for test mass scanning the interesting mass range

Mass resolution and scale uncertainties

- lacktriangle CMS: e/γ energy estimated using multivariate regression
- ATLAS: weighted sum of energy deposits in the different calorimeter layers
- Scale and resolution is obtained from $W, Z, J/\psi$ and Υ resonances
- Additional smearing is applied to MC to match the resolution in data

Resulting systematic uncertainty on mass measurements is $\sim 0.5\%$ per channel $(H \to \gamma \gamma, H \to 4\ell)$


Di-photon mass measurements

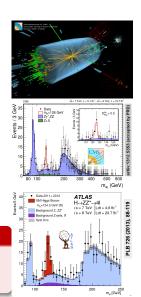


- Channel features
 - Clean signature: two isolated, high-p_T photons
 - Excellent mass resolution: 1-2%
 - Large QCD background
- Analysis roadmap
 - Events categorized according to photon resolution and kinematics
 - Additional categorization on production mode
 - Signal extracted from simultaneous S+B fit in all categories

Measured mass

ATLAS: $126.8 \pm 0.2(stat) \pm 0.7(syst)$ **CMS:** $125.4 \pm 0.5(stat) \pm 0.6(syst)$

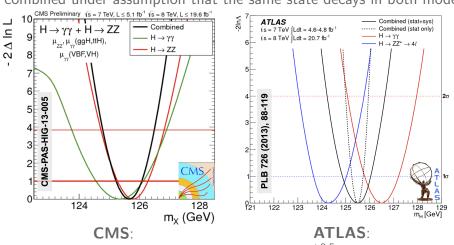
m,, (GeV


$ZZ \rightarrow 4\ell$ mass measurements

- Channel features
 - Golden channel: four isolated leptons
 - **E**xtremely pure: $S/B \sim 2$
 - Very small branching fraction $(\sim 10^{-4})$
- Analysis roadmap
 - Maximize acceptance for low-p_T leptons
 - CMS: use *m*_{4/} and kin. discriminant(KD) use event-by-event errors
 - ATLAS: use m₄₁ for S/B separation
 Categorization: VBF, VH and untagged

Measured mass

ATLAS: $124.3^{+0.6}_{-0.5}(stat)^{+0.5}_{-0.3}(syst)$ **CMS:** $125.6 \pm 0.4(stat) \pm 0.2(syst)$



Mass measurements combination

Measurements from di-photon and four lepton final states are combined under assumption that the same state decays in both modes

 $m_H = 125.7 \pm 0.3 (syst) \pm 0.3 (stat) \ m_H = 125.5^{+0.5}_{-0.6} (syst) \pm 0.2 (stat)$

Outline

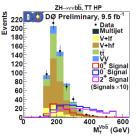
- 1 Higgs boson mass
- 2 Spin and CP quantum numbers
- 3 Higgs boson width

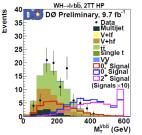
Spin/parity of the new boson

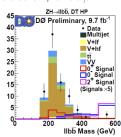
- Standard Model prediction: Higgs boson is a 0⁺ state
 - very good test of SM compatibility
- General form of non-zero spin state scattering amplitude has large amount of free parameters
 - we can exclude alternative hypotheses via test statistics:

$$q = -2ln \frac{\mathcal{L}(B + \hat{\mu}_{SM}S_{SM}; \hat{\theta}_{SM})}{\mathcal{L}(B + \hat{\mu}_{ALT}S_{ALT}; \hat{\theta}_{ALT})}$$

- Most sensitive channels:
 - $H \rightarrow ZZ \rightarrow 4\ell$
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow WW \rightarrow 2\ell 2\nu$
 - VH production following $H \rightarrow bb$ for Tevatron




$VH,\; H o bar{b}$ channel

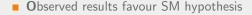


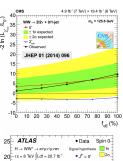
Tevatron results

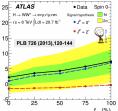
- VH production kinematics depend on J^P : let $\beta = 2p/\sqrt{s}$
 - $^{-}$ 0+: S-wave production, $\sigma \propto \beta$ near threshold
 - lacksquare 0-: P-wave production, $\sigma \propto eta^3$ near threshold
 - ullet 2+: D-wave dominates for graviton-like production, $\sigma \propto eta^5$

D0 Note 6387, D0 Note 6406

Exclusion results


- 0⁻ model excluded at 97.9%CL (2.3 σ obs, 3.1 σ exp)
- 2^+ model excluded at 99.9%CL (2.4 σ obs, 3.2 σ exp)


$H o WW o 2\ell 2\nu$ decay channel

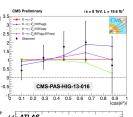


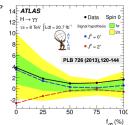
- Channel features
 - Two high- p_T leptons and MET
 - Large branching fraction
 - Large backgrounds
- Analysis roadmap
 - Select two high- p_T different flavor leptons plus MET
 - Event categorization:
 - \rightarrow CMS: 0,1 jet bins
 - ightarrow ATLAS: 0-jet only
 - Hypothesis test with 2D templates:
 - \rightarrow CMS: $(m_{\ell\ell}, m_T)$
 - \rightarrow **ATLAS**: two BDT discriminants $(\delta \phi_{\ell\ell}, m_{\ell\ell}, m_T)$:
 - separate SM from background
 - separate alternative hypothesis from background

Expected exclusion for 2_m^+ model $1 - CL_S > 0.94$

$H \rightarrow \gamma \gamma$ decay channel

- Analysis roadmap
 - Distribution of production angle is sensitive to spin/parity $cos\theta^* = 2\frac{E_2p_{Z1} E_1p_{Z2}}{m_{\gamma\gamma}\sqrt{m_{\gamma\gamma}^2 + p_{T\gamma\gamma}^2}}$


CMS: cut-based, 4 categories ATLAS: no categorization

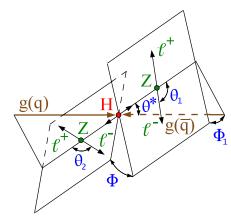

Hypothesis testing:

CMS: simultaneous fit to $m_{\gamma\gamma}$ in

5 $cos\theta^*$ bins

ATLAS: 2D fit of $(cos\theta^*, m_{\gamma\gamma})$

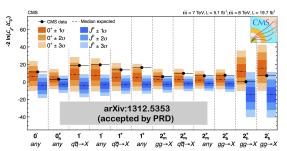
- Observed results favour SM hypothesis
- **Expected separation:** $1 CL_S > 17(55) 60(99)\%$ for CMS (ATLAS)

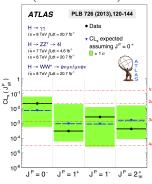


$ZZ \rightarrow 4\ell$ decay channel

Allows to test many different spin-parity hypotheses

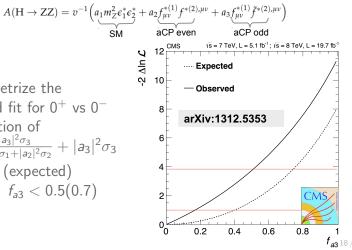
- Event selection identical to the mass analysis
- Spin/parity hypotheses separated using angular correlation between leptons
 - CMS: use Matrix Element kinematic discriminant
 - **ATLAS**: use BDT-based discriminant
- Hypothesis testing:
 - CMS: 2D fit of superKD($m_{4I} \times KD$) vs $KD(J^P)$
 - ATLAS: template fit of BDT score distribution


$$\mathcal{D}_{JP} = \left[1 + \frac{\mathcal{P}_{JP}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega})|m_{4I}}{\mathcal{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega})|m_{4I}}\right]^{-1}$$


$ZZ \rightarrow 4\ell$ decay channel

- Observed results favour SM hypothesis
- Tested spin-1 and 0^- hypothesis excluded at $CL_S > 99\%$
- Tested spin-2 hypothesis excluded at $CL_S > 95\%$

(combination)


Beyond hypothesis testing

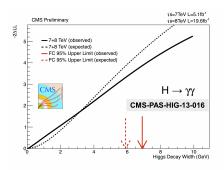
- Spin and parity are strictly correlated with anomalous couplings of the Higgs boson
 - CMS $H \rightarrow ZZ \rightarrow 4I$ analysis started to exploit this:

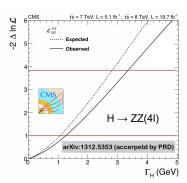
$$A(H \to ZZ) = v^{-1} \left(\underbrace{a_1 m_Z^2 \epsilon}_{\text{SM}} \right)$$

- Re-parametrize the likelyhood fit for 0⁺ vs 0⁻ as a function of $f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2} + |a_3|^2 \sigma_3$
- Observed (expected) exclusion: $f_{a3} < 0.5(0.7)$ @95%CL

Outline

- 1 Higgs boson mass
- 2 Spin and CP quantum numbers
- 3 Higgs boson width

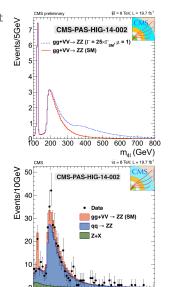



Direct constraints

SM prediction: $\Gamma_H \sim$ 4 MeV

- Direct measurements heavily limited by experimental resolution, $\mathcal{O}(1\%)$
- Current upper limits:
 - $\Gamma_H \leq 3.7$ GeV from $H \rightarrow \gamma \gamma$
 - $\Gamma_H \leq 3.4$ *GeV* from $H \rightarrow ZZ \rightarrow 4\ell$

Width constraints from off-shell Higgs



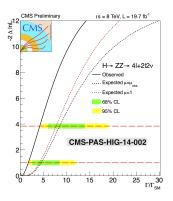
 $H^* o ZZ(o 4\ell, 2\ell 2\nu)$ decay channels

- off-shell Higgs boson production is small but the BR to 2 real Z is large above $2m_Z$
- peak yield depends on couplings and width $\sigma_{pp\to H\to ZZ}\sim \frac{g_{Hgg}^2g_{HZZ}^2}{E}$
- off-shell Higgs yield is independent of width $\sigma_{pp \to H \to ZZ} \sim g_{Hgg}^2 g_{HZZ}^2$
- ⇒ simultaneous measurement of on-peak and off-peak production allows to constrain the Higgs boson width
 - interference and VBF production are taken into account
- background and interference:

 using $m_{4\ell}$ and a kinematic discriminant D_{gg} in case of $\mathbf{ZZ} \to \mathbf{4}\ell$ using m_{T}^{T} in case of $\mathbf{ZZ} \to \mathbf{2}\ell\mathbf{2}\nu$

build probability templates for signal,

m, (GeV



Width constraints from off-shell Higgs

- Unbinned likelihood fit constraining the peak yield to the observed value
- $m_H = 125.6 \; GeV, \ \Gamma_H^{SM} = 4.15 \; MeV$
- We expect to exclude $\Gamma_H < 35.3 \; MeV \; @ 95\% \; CL$
- We observed exclusion $\Gamma_H < 17.4 \; MeV \; @ 95\% \; CL$

	4ℓ	$2\ell 2\nu$	Combined
Expected 95% CL limit, r	11.5	10.7	8.5
Observed 95% CL limit, r	6.6	6.4	4.2
Observed 95% CL limit, $\Gamma_{H}(MeV)$	27.4	26.6	17.4
Observed best fit, r	$0.5^{+2.3}_{-0.5}$	$0.2^{+2.2}_{-0.2}$	$0.3^{+1.5}_{-0.3}$
Observed best fit, $\Gamma_{H}(MeV)$	$2.0^{+9.6}_{-2.0}$	$0.8^{+9.1}_{-0.8}$	$1.4^{+6.1}_{-1.4}$

Summary

- \blacksquare First precision measurement in the Higgs sector is m_H
 - Allows to complete SM electroweak predictions
 - Expected precision is better than 0.2% for final LHC Run 1 combination

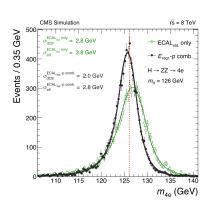
```
CMS: m_H = 125.7 \pm 0.3(syst) \pm 0.3(stat), ATLAS: m_H = 125.5^{+0.5}_{-0.6}(syst) \pm 0.2(stat)
```

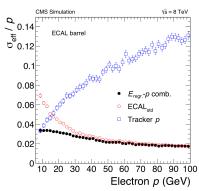
- Spin/parity of the new boson consistent with 0⁺
 - A lot of alternative hypotheses were tested
 - Move towards anomalous couplings fits
- **NEW ANALYSIS** from CMS: put extremely tight constraint on the Higgs boson width from the off-shell production, $\Gamma_H < 17.4 \ MeV \ @95\%CL$.

Overall, very good compatibility with SM is found

References

Experiment	Channel	Ref	
	Mass	PLB 726 (2013), pp.88-119	
ATLAS	Spin-CP	PLB 726 (2013), pp.120-144	
	$H o \gamma \gamma$	ATL-PHYS-PUB-2013-014	
	$H o WW o \ell \nu \ell \nu$	JHEP 01 (2014) 096	
CMS	$H o ZZ o 4\ell$	arXiv:1312.5353	
		(accepted by PRD)	
	$H ightarrow \gamma \gamma$ spin and width	CMS-PAS-HIG-13-016	
	Mass	CMS-PAS-HIG-13-005	
	H o ZZ width	CMS-PAS-HIG-14-002	
	from off-shell production	CIVI3-FA3-HIG-14-002	
Tevatron	Spin-CP	PRD 88 (2013) 052014	

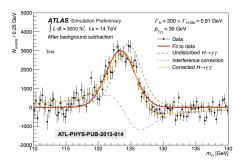


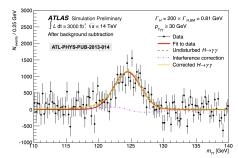

BACKUP

Resolution of electrons

- Electron energy estimation is significantly improved by combining ECAL and tracker measurements
- Electron energy resolution is close to the designed one

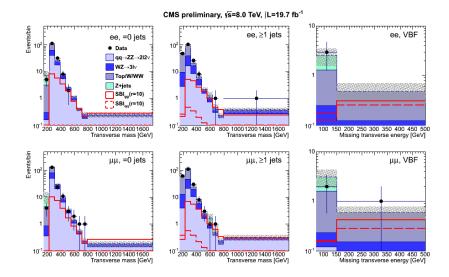
Spin-parity models and observables (CMS)


Discriminant	Note	
	Observables used for the signal strength measurement	
$m_{4\ell} \ {\cal D}_{ m bkg}^{ m kin}$	Four-lepton invariant mass, main background discrimination Discriminate SM Higgs boson against ZZ background	
$\mathcal{D}_{ m jet}^{ m G} \ p_{ m T}^{4\ell}$	Linear discriminant, uses jet information to identify VBF topology p_T of the 4ℓ system, discriminates between production mechanisms	
Observables used in the spin-parity hypothesis testing		
$\mathcal{D}_{ ext{bkg}}$	Discriminates SM Higgs boson against ZZ background, includes $m_{4\ell}$	
\mathcal{D}_{1^-}	Exotic vector (1 ⁻), VBF	
\mathcal{D}_{1^+}	Exotic pseudovector (1 ⁺), VBF	
$\mathcal{D}^{\mathtt{gg}}_{2^+_{\mathtt{m}}}$	Graviton-like with minimal couplings (2_m^+) , gluon fusion	
$\mathcal{D}^{88}_{2_{m}^{+}}$ $\mathcal{D}^{qar{q}}_{2_{b}^{+}}$ $\mathcal{D}^{288}_{2_{b}^{+}}$ $\mathcal{D}^{88}_{2_{b}^{+}}$ $\mathcal{D}^{88}_{2_{b}^{+}}$ $\mathcal{D}^{88}_{2_{b}^{-}}$	Graviton-like with minimal couplings (2_m^+) , VBF	
$\mathcal{D}^{ m gg}_{2^+_{ m h}}$	Graviton-like with SM in the bulk (2_b^+) , gluon fusion	
$\mathcal{D}^{ m gg}_{2^+_{ m h}}$	Tensor with higher dimension operators (2_h^+) , gluon fusion	
$\mathcal{D}_{2_{ m h}}^{ m gg}$	Pseudotensor with higher dimension operators (2_h^-) , gluon fusion	
Production	n-independent observables used in the spin-parity hypothesis testing	
\mathcal{D}_{0^-}	Pseudoscalar (0 ⁻), discriminates against SM Higgs boson	
$\mathcal{D}_{0_{b}^{+}}$	Non-SM scalar with higher dimension operators (0_h^+)	
$\mathcal{D}_{ m bkg}^{ m dec}$	Discriminates against ZZ background, includes $m_{4\ell}$, excludes $\cos\theta^*$, Φ_1	
$\mathcal{D}_{1^-}^{ ext{dec}}$	Exotic vector (1 ⁻), decay-only information	
$\mathcal{D}_{1^+}^{\operatorname{dec}}$	Exotic pseudovector (1 ⁺), decay-only information	
$\mathcal{D}_{2_{\mathrm{m}}^{+}}^{\mathrm{dec}}$	Graviton-like with minimal couplings $(2_{\rm m}^+)$, decay-only information	

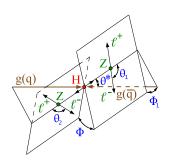


Di-photon interferometry

- Exploit destructive interference between $gg \to \gamma \gamma$ and $gg \to H \to \gamma \gamma$ (see for details arXiv:1305.3854)
 - Generate effective mass shift as a function of Higgs boson p_T
 - Constrain width from measurement of m_H vs $p_T(H)$
 - Projected sensitivity for 3 ab^{-1} : $\Gamma_H < 30 \times \Gamma_H^{SM}@95\%CL$



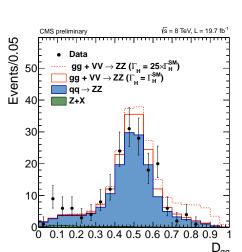
Width discriminant distributions


 $ZZ \rightarrow 2\ell 2\nu$

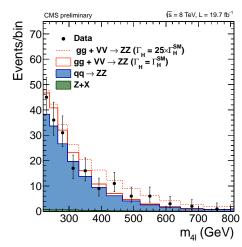
D_{gg} (ggMELA) kinematic discriminant

- ggMELA discriminant was developed in the context of the Legacy analysis
- High performances for separating gg→ZZ from qq→ZZ where gg→ZZ includes signal, continuum and their interference for any relative signal strength a.

Built from signal and background probabilities: $D_{gg,a}=\frac{P_{gg,a}}{P_{gg,a}+P_{q\bar{q},a}}$, where $P_{gg,a}=a\times P_{\mathrm{sig}}^{\mathrm{gg}}+\sqrt{a}\times P_{\mathrm{int}}^{\mathrm{gg}}+P_{\mathrm{bkg}}^{\mathrm{gg}}$ and $P_{q\bar{q},a}=P_{\mathrm{bkg}}^{q\bar{q}}$


- Signal strength *a* must be chosen when building the discriminant.
- From preliminary studies we expected sensitivity for run 1 data to be around $10 \times SM$, so we chose $D_{gg,10}$.

About 30% improvement when including it in the fit procedure



Width discriminant distributions

 $ZZ \rightarrow 4\ell$

Systematic uncertainties in width analysis vin

- \blacksquare $gg \rightarrow ZZ$
 - Part of cross section uncertainties cancel in the ratio between off-shell and on-shell
 - Shape uncertainties obtained varying PDFs: CT10. MSTW and NNPDF
 - Correlated shape-yield uncertainties produced varying the scales and applying corresponding K-factor (arXiv:1312.2397)
 - $K_{bkg} = K_{sig} \times (1.0 \pm 0.1)$ (arXiv:13043053+private com.)
- $\mathbf{q}\bar{\mathbf{q}} \to ZZ$
 - QCD scale: correlate shape and yield uncertainties
 - PDFs: constant 4%
- $\blacksquare \mu$ uncertainty
 - $\mu_{exp} = 1.00^{-0.24}_{+0.27}$ $\mu_{obs} = 0.93^{-0.24}_{+0.26}$