SM HIGGS PHYSICS: RECENT DEVELOPMENTS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

MADRID, APRIL 8, 2014

SM@LHC 2014

SM(?) HIGGS PHYSICS: PRECISION PHYSICS(?)

FROM SIGNAL STRENGTHS 19.03.14 λ_{WZ} $\lambda_{wz} = 0.94^{+0.14}_{-0.29}$ ATLAS 19.03.14 λ_{WZ} [0.73-1.0] CMS $1.57^{+0.33}$ $\mu_{\gamma\gamma}$ $\kappa_{\rm F} = 0.99^{+0.17}_{-0.15}$ κ_F ATLAS -0.28 μ_{zz} = 1.44+0.40 κ_F [0.71-1.11] CMS ⊢ $\kappa_{\rm V} = 1.15^{+0.08}_{-0.08}$ κ_v ы ATLAS u **= 1.00**^{+0.32} ATLAS μ_{WW} κ_v [0.81-0.97] CMS н $\mu_{\tau\tau}$ [m_=125.5 GeV] = 1 $\lambda_{FV} = 0.86^{+0.14}_{-0.12}$ λ_{FV} ---ATLAS $\mu_{_{\text{bb}}}$ $u = 0.2^{+0.7}$ $\kappa_{g} = 1.08^{+0.15}_{-0.13}$ κ_q ┝┝━─┥ ATLAS κ_g Combined fit $\mu = 1.30^{+0.18}$ [0.73-0.94] CMS н κγ $\kappa_{\gamma} = 1.19^{+0.15}_{-0.12}$ ⊢•−1 ATLAS $\mu_{\gamma\gamma}$ μ **= 0.77**^{+0.27} κγ -0.27 [0.79-1.14] CMS μ_{zz} μ **= 0.92**^{+0.28} λ_{du} [0.78-1.15] ATLAS λ_{dy} , μ **= 0.68**^{+0.2} μ_{WW} [1.0-1.6] CMS CMS λ_{lq}^{du} λ_{lq} B_{iu} B_{iu} u **= 1.10**^{+0.41} $\mu_{\tau\tau}$ [0.99-1.5] ATLAS [m_=125.7 GeV] [0.89-1.62] CMS $\mu = 1.15^{+0.62}$ μ_{bb} B_{iu}<0.55 ATLAS $\mu = 0.80^{+0.14}$ Combined fit ----– B_{iu}<0,64 CMS $\hat{\mu} \sim 1.0, \sigma_{\hat{\mu}} \gtrsim 1\overline{2\%}$ -1.5 -0.5 0 0.5 1.5 2 -1.5 -0.5 0.5 1.5 -2 -1 0 1 Signal strength Coupling scale factor

TO COUPLINGS

Higgs Couplings, Moriond 2014, Eilam Gross

(E. Gross, Moriond 2014)

2

SM(?) HIGGS PHYSICS: PRECISION PHYSICS(?)

- PRECISION:
 - HIGHER ORDERS
 - PDFs (and α_s)
 - THEORETICAL UNCERTAINTIES
- PRECISION?:
 - $t\bar{t}H$
 - SINGLE TOP
 - COUPLING TO CHARM (AND BOTTOM)
- PRECISION!:
 - RESUMMATION: JET VETOS
 - MULTISCALE: QUARK MASS DEPENDENCE
 - FINAL STATES: MATCHING TO MC

PRECISION

HIGHER-ORDER CALCULATIONS "2013 WILL BE REMEMBERED AS THE YEAR OF $2 \rightarrow 2$ at NNLO" (L. Dixon)

HIGHER-ORDER CALCULATIONS "2013 WILL BE REMEMBERED AS THE YEAR OF $2 \rightarrow 2$ at NNLO" (L. Dixon)

THE HIGGS+JET CROSS-SECTION IN THE GG CHANNEL

- k_t Jet Algorithm, R = 0.5, $p_T > 30$ GeV
- GG CHANNEL DOMINANT, 70%
- Significantly reduced scale dependence $\sim 4\%$
- LARGE K FACTORS: $\sigma_{rmNLO}/\sigma_{LO} \sim 1.6$, $\sigma_{NNLO}/\sigma_{NLO} \sim 1.3$

(Boughezal, Caola, Melnikov, Petriello, Schulze, 2013)

DOUBLE HIGGS PRODUCTION

- IMPORTANT FOR TRIPLE HIGGS COUPLING
- NNLO COMPUTED IN THE POINTLIKE LIMIT
- SIZABLE K FACTORS: $\sigma_{\rm NLO}/\sigma_{\rm LO} \sim 1.9$, $\sigma_{\rm NNLO}/\sigma_{\rm NLO} \sim 1.2$ for total xsect

(de Florian, Mazzitelli, 2013)

DOUBLE HIGGS PRODUCTION

- IMPORTANT FOR TRIPLE HIGGS COUPLING
- NNLO COMPUTED IN THE POINTLIKE LIMIT
- SIZABLE K FACTORS: $\sigma_{\rm NLO}/\sigma_{\rm LO} \sim 1.9$, $\sigma_{\rm NNLO}/\sigma_{\rm NLO} \sim 1.2$ for total xsect
- NLO DEPENDENCE ON m_t ALSO KNOWN AS EXPANSION IN $\frac{m_h^2}{m_t^2}$ SIZABLE FOR LARGE INVARIANT MASS

RESUMMATION

- FULLY EXCLUSIVE NNLO COMPUTATIONS GRADUALLY EXTENDED TO MANY SM AND MSSM PROCESSES (DRELL-YAN, DIPHOTON,...)
- AVAILABLE FOR $pp \to WH + X \to \ell \to \overline{b}b + X$ (Ferrera, Grazzini, Tramontano, 2011)
- NNLO+NLL RESUMMED (THRESHOLD+ p_T) RESULTS AVAILABLE FOR $H \rightarrow \gamma \gamma$, $H \rightarrow WW \rightarrow \ell \nu \ell \nu$, $H \rightarrow ZZ \rightarrow 4\ell$ \Rightarrow CAN STUDY FULL p_T SPECTRUM (de Florian, Ferrera, Grazzini, Tommasini, 2012)

- THE PERTURBATIVE SERIES FOR $gg \rightarrow H$ converges slowly
- SCALE VARIATION UNDERESTIMATES NEXT ORDER (FACTORIZATION SCALE DEPENDENCE NEGLIGIBLE; ONLY RENORMALIZATION SCALE DEPENDENCE SIGNIFICANT)
- N³LO SCALE DEPENDENCE DETERMINED EXPLICITLY: \Rightarrow APPROXIMATE N³LO DETERMINED; ASSUMING NON-LOGARITHMIC TERMS AT N³LO PROPORTIONAL TO NNLO (Buehler, Lazopoulos), AS A FUNCTION OF PROPORTIONALITY K
- N³LO COMPUTATION IN GLUON CHANNEL UNDERWAY, SEVERAL INGEDIENTS COMPUTED IN 2013 (Anastasiou, Duhr, Dulat, Gehrmann, Herzog, Mistlberger 2013; Li and Zhu, 2013; Kilgore, 2013) ⇒ SEE BUEHLER'S TALK
- FULL RESULT IN THE SOFT LIMIT (ALL TERMS WHICH SURVIVE LIMIT $\tau \to 1$) RECENTLY PUBLISHED (Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger 2014) \to LOG TERMS KNOWN, NOW ALSO CONSTANT!

APPROXIMATE N³LO RESULTS

- RESUMMATION (de Florian, Grazzini 2012) EFFECTIVELY AMOUNTS TO APPROXIMATE N³LO (8% INCREASE WR TO NNLO, 6% FROM $O(\alpha_s^3)$) WITH SPECIFIC "N-SOFT" CHOICE OF LOG APPROX, & UNDETERMINED (ARBITRARY) $O(\alpha_2^3)$ CONST. $g_{0,3} = 0$
- APPROXIMATE N³LO FROM MELLIN-SPACE ANALYTICITY \Rightarrow SINGULARITY AT $N \rightarrow \infty$ FROM SUDAKOV RESUMMATION; RIGHTMOST POLES FROM BFKL RESUMMATION (Ball, Bonvini, SF, Marzani, Ridolfi, 2013), CONSTANT ESTIMATED AS $g_{0,3} = 114.5$ (FINITE m_t , POINTIKE: $g_{0,3} = 112.6$)
- CHANGING CONST. IN RESUMMED (N-SOFT) AMOUNTS TO HALF THE DIFFERENCE BETWEEN RESUM. & APPROXIMATE
- VERY DIFFERENT RESULT OBTAINED IF ONE RESUMS IN x SPACE ("SOFT-0") AS IN (Anastasiou et al, 2014)

RENORMALIZATION SCALE DEP.

APPROXIMATE N³LO RESULTS

- RESUMMATION (de Florian, Grazzini 2012) EFFECTIVELY AMOUNTS TO APPROXIMATE N³LO (8% INCREASE WR TO NNLO, 6% FROM $O(\alpha_s^3)$) WITH SPECIFIC "N-SOFT" CHOICE OF LOG APPROX, & UNDETERMINED (ARBITRARY) $O(\alpha_2^3)$ CONST. $g_{0,3} = 78.13$
- APPROXIMATE N³LO FROM MELLIN-SPACE ANALYTICITY \Rightarrow SINGULARITY AT $N \rightarrow \infty$ FROM SUDAKOV RESUMMATION; RIGHTMOST POLES FROM BFKL RESUMMATION (Ball, Bonvini, SF, Marzani, Ridolfi, 2013), CONSTANT ESTIMATED AS $g_{0,3} = 114.5$ (FINITE m_t , POINTIKE: $g_{0,3} = 112.6$) NOW KNOWN EXACTLY $g_{0,3} = 114.8$
- CHANGING CONST. IN RESUMMED (N-SOFT) AMOUNTS TO HALF THE DIFFERENCE BETWEEN RESUM. & APPROXIMATE
- VERY DIFFERENT RESULT OBTAINED IF ONE RESUMS IN x SPACE ("SOFT-0") AS IN (Anastasiou et al, 2014)

RENORMALIZATION SCALE DEP.

(J. Campbell, HCP2012)

- PDF UNCERTAINTY ALWAYS DOMINANT
- IN GLUON FUSION, COMPARABLE TO SCALE BUT VERY LARGE

PRODUCTION MODES PDF UNCERTAINTY

- LHC8, highest available QCD order; only PDF uncertainty shown; $\alpha_s = 0.119$
- GOOD AGREEMENT BETWEEN GLOBAL PDF SETS; SOME SPREAD FOR GLUON FUSION

(CT-MSTW-NNPDF, 2013)

HIGGS IN GLUON FUSION THE PDF4LHC PRESCRIPTION

- HOW CAN ONE HANDLE DISCREPANCIES WHICH ARE NOT UNDERSTOOD?
- CONSERVATIVE ANSWER: TAKE THE ENVELOPE OF RESULTS

CRITICISM

- IT IS VERY CONSERVATIVE: α_s UNCERTAINTY IS COUNTED TWICE
- TAKING AN ENVELOPE HAS NO CLEAR STATISTICAL MEANING

THE PDF4LHC PRESCRIPTION IMPROVEMENT

A LESS CONSERVATIVE PRESCRIPTION:

- COMBINE PDF UNCERTAINTIES WITH SINGLE CENTRAL α_s VALUE
- PERFORM STATISTICAL COMBINATION OF THREE SETS (COMBINE HISTOGRAMS)
- ADD α_s uncertainty in the end

(G.Watt, Higgs WG Theoretical Uncertainty Task Force, in progress)

- LONG-STANDING DISCREPANCY IN THE d/u ratio between $\ensuremath{\mathsf{MSTW}}$ and other global fits
- RESLOVED BY CMS W Asymmetry data
- \bullet EXPLAINED BY INSUFFICIENTLY FLEXIBLE PDF parametrization \rightarrow NeW MSTW08Deut set

RESOLVING THE DISCREPANCIES?

- ONGOING BENCHMARKING CT-MSTW-NNPDF-HERAPDF
- HERA-ONLY FITS AGREE, BUT LARGE UNCERTAINTIES

(Cooper-Sarkar et al, Les Houches 2014)

RESOLVING THE DISCREPANCIES?

- ONGOING BENCHMARKING CT-MSTW-NNPDF-HERAPDF
- HERA-ONLY FITS AGREE, BUT LARGE UNCERTAINTIES
- FITS TO DATA SUBSETS CONSISTENT, BUT ONLY MARGINALLY: TENSION BETWEEN COLLIDER AND NEUTRINO DATA

DO WE NEED N³LO PDFs?

- IN PRINCIPLE, YES
- LOOK AT THE CROSS SECTION AS A FUNCTION OF THE PERTURBATIVE ORDER OF THE PDF AND THE MATRIX ELEMENT
- - HIGGS GLUON FUSION: PERTURBATIVE DEP. OF PDF NEGLIGIBLE IN COMPARISON TO MATRIX ELEMENT \Rightarrow TH. UNCERTAINTY ALMOST ENTIREY DUE TO MATRIX ELEMENT \Rightarrow NO!

SCALE UNCERTAINTY & DEP. ON PERTURBATIVE ORDER

(s.f., Isgrò, Vita, 2014)

DO WE NEED N³LO PDFs?

- IN PRINCIPLE, YES
- LOOK AT THE CROSS SECTION AS A FUNCTION OF THE PERTURBATIVE ORDER OF THE PDF AND THE MATRIX ELEMENT
- - HIGGS GLUON FUSION: PERTURBATIVE DEP. OF PDF NEGLIGIBLE IN COMPARISON TO MATRIX ELEMENT \Rightarrow TH. UNCERTAINTY ALMOST ENTIREY DUE TO MATRIX ELEMENT \Rightarrow NO!
 - TOP: PERTURBATIVE DEP. OF PDF SMALLER, BUT NOT NEGLIGIBLE IN COMPARISON TO MATRIX ELEMENT, ANTICORRELATED TO IT \Rightarrow COMBINED UNCERTAINTY SMALLER \Rightarrow YES!

SCALE UNCERTAINTY & DEP. ON PERTURBATIVE ORDER

(s.f., Isgrò, Vita, 2014)

THEORETICAL UNCERTAINTIES GLUON FUSION AS A CASE STUDY

- ALL ORDER RESULT MUST BE SCALE INDEPENDENT
 ⇒ SCALE DEPENDENCE GIVES LOWER BOUND TO UNCERTAINTY DUE TO MISSING
 HIGHER ORDERS
 UNCERTAINTIES UNDERESTIMATED
- IF SEVERAL ORDERS KNOWN, LOOK AT THE BEHAVIOUR OF KNOWN ORDERS, ASSUMING COEFFICIENTS ARE OF SIMILAR ORDER \rightarrow BAYESIAN ESTIMATE OF UNCERTAINTY (Cacciari, Houdeau, 2011); RESULT DEPEND ON THE CHOICE OF EXPANSION PARAMETER $\alpha_s \rightarrow \lambda \alpha_s$ UNCERTAINTIES UNDERESTIMATED IF EXPANSION IN α_s , OK IF EXPANSION PARM. RESCALED
- ALTERNATIVELY, USE FIRST SEVERAL ORDERS TO CONSTRUCT AN ALL-ORDER APPROXIMANT (POSSIBLY BASED ON BOREL SUMMATION)
 ⇒ ALL-ORDER - FIXED ORDER DIFFERENCE ESTIMATES UNCERTAINTY (David, Passarino, 2013)

ALMOST IDENTICAL TO RESCALED CH!

THE VALUE OF α_s

- SENSITIVITY IN GLUON FUSION CHANNEL LARGE!: $\Delta \sigma \sim 3\Delta \alpha$ (in percentage at NNLO, by power counting)
- WHAT IS THE VALUE OF $\Delta \alpha ??$
 - PDG value (S. Bethke) $\alpha_s = 0.1184 \pm 0.0007$
 - IT IS AN AVERAGE OF AVERAGES
 - SOME SUB-AVERAGES (E.G. DIS) INCLUDE DATA/EXTRACTIONS WHICH HAVE BEEN SHOWN TO BE INCORRECT
 - OTHER SUB-AVERAGES (E.G. τ OR JETS) INCLUDE DETERMINATIONS WHICH DIFFER FROM EACH OTHER BY EVEN FOUR-FIVE σ
- AVERAGING THE TWO MOST RELIABLE VALUES (GLOBAL EW FIT & τ , BOTH N³LO, NO DEP. ON HADRON STRUCTURE) GIVES $\alpha_s = 0.1197 \pm 0.0014$

THE VALUE OF α_s AND ITS UNCERTAINTY REMAIN AN OPEN QUESTION!

PRECISION?

COUPLING TO TOP

- TOP YUKAWA $\Rightarrow Ht\bar{t}$
- ENHANCE SIGNAL-TO-BACKGROUND RATIO:
 - BOOSTED (Plehn, Salam, Spannowsky, 2013) & MATRIX ELEMENT METHOD (Artoisenet, de Aquino, Maltoni, Mattelaer, 2013)
 - KEEPING SPIN CORRELATIONS, ANGULAR $\cos \theta_{\ell\ell}$ DISTRIBUTION DISCRIMINATES SIGNAL VS. BACKGROUND (WOULD BE COMPLETE IN CHIRAL LIMIT)
 - DISCRIMINATION MAXIMAL IN TOP REST FRAME

(Biswas, Frederix, Gabrielli, Mele, 2014)

- SHAPE STRONGLY DEPENDENT ON CANCELLATION OR LACK THEREOF (BSM)
- CAN ENHANCE DISCRIMINATION BY SUITABLE CUTS & VETOS

TOP-HIGGS RAPIDITY DISTANCE: SM vs. BSM

b jet harder than light jet

INTERFEROMETRY COUPLING TO CHARM (AND B)

- $H \to V + \gamma$ with $V = J/\psi, \Upsilon \Rightarrow$ coupling to heavy quarks
- $Hc\bar{c}$ (and $Hb\bar{b}$): access coupling of Higgs to 2nd generation guarks!
- HIGGS DECAYS IN $Q\bar{Q}$ pair which fragments into $V + \gamma \Rightarrow$ Small
- Interferes with $H\to\gamma\gamma^*$ with subsequent fragmentation of γ^* into $V\Rightarrow$ large
- COMPUTED AT NLO: (Bodwin, Petriello, Stoynev, Velasco, 2013))
- \bullet high sensitivity to BSM deviations

$$k = g_{H\bar{c}c} / g_{H\bar{c}c}^{SM}$$

$$h o J/\Upsilon\gamma$$

 $h \to J/\psi\gamma$

MORE INTERFEROMETRY THE HIGGS WIDTH

- INTERFERENCE BETWEEN $gg \rightarrow H \rightarrow ZZ$ & CONTINUUM CAN BE USED TO DETERMINE WIDTH (Dixon, Li, 2013)
- STRONG SENSITIVITY OF INTERFERENCE TO WIDTH FOR INVARIANT MASSES ABOVE THE PEAK (Passarino, Kauer, 2012; Caola, Melnikov, 2013)
- CAN USE ANALITICITY METHODS TO GET APPROXIMATE NLO INTERFERENCE (Bonvini, Caola, SF, Melnikov, Ridolfi, 2013)
- \Rightarrow SEE PASSARINO'S TALK

PRECISION!

JET VETOS \Rightarrow SEE TACKMANN'S TALK

- CROSS-SECTION FOR HIGGS+ AT LEAST ONE JET CONTAINS DOUBLE LOGS OF MINIMAL p_T OF JET
- \Rightarrow CROSS SECTION WITH JET VETO CONTAINS DOUBLE LOGS OF p_t^{veto} : $\sigma_{>1} \sim (\alpha L^2)^n$; $\sigma_{tot} \sim \alpha^n \rightarrow \sigma_o \equiv \sigma_{tot} - \sigma \geq 1 \sim (\alpha L^2)^n$;
- RESUMMATION OF ZERO-JET CROSS-SECTION PERFORMED UP TO NNLL+NNLO WITH PERTURBATIVE APPROACH (Banfi, Monni, Salam, Zanderighi, 2012) & SCET (Stewart, Tackmann, Walsh, Zuberi, 2012-2013; Becher, Neubert, Rothen, 2013)
- GOOD PERTURBATIVE STABILITY: SIGNIFICANTLY IMPROVED UNCERTAINTY

0-JET CROSS-SECTION FOR HIGGS IN GLUON FUSION

(Stewart, Tackmann, Walsh, Zuberi, 2013)

THE ONE-JET CROSS SECTION

- TWO DIFFERENT REGIONS: $p_t^{\text{veto}} \ll p_T \sim M_h$; $p_t^{\text{veto}} \sim p_T \ll M_h$
- FIRST REGION RESUMMED AT NLL+NLO (MATCHED) USING SCET (Liu, Petriello, 2012-2013),
- HUGE REDUCTION IN UNCERTAINTY \Rightarrow 25% IF CONSERVATIVELY SWITCH OFF RESUMMATION AT $p_t^{\rm jet} = m_h/2$

(Liu, Petriello, 2013)

EFFICIENCIES AND UNCERTAINTIES

- EXPERIMENTALLY, ONE IS INTERESTED IN THE EFFICIENCY, DEFINED AS $\epsilon_0(p_T^{\text{veto}}) \equiv \frac{\sigma_0(p_T^{\text{veto}})}{\sigma_{tot}}$
- SUBTLE ISSUES IN UNCERTAINTY ESTIMATION:
 - WHAT IF ONE INSTEAD DEFINES $\epsilon_0(p_T^{\text{veto}}) \equiv 1 \frac{\sigma_{\geq 1}(p_T^{\text{veto}})}{\sigma_{tot}}$? EQUIVALENT UP TO HIGHER ORDERS
 - CORRELATIONS BETWEEN UNCERTAINTIES: $\sigma_{tot} \& \epsilon_0(p_T^{\text{veto}})$ UNCORRELATED \Rightarrow CORRELATIONS INDUCED BETWEEN σ_0 AND $\sigma_{>1}$
 - \Rightarrow MUST COMPUTE COVARIANCE MATRIX!

(Banfi, Monni, Salam, Zanderighi, 2012)

HQ MASSES IN HIGGS PRODUCTION

- AN EXTREME MULTISCALE PROBLEM: p_T SPECTRUM IN HIGGS PRODUCTION IN GLUON FUSION
- SCALES: m_t , m_b , m_H , p_T , s
- EFFECT OF FINITE m_B is visible at small p_T
- **DISCREPANCY** BETWEEN POWHEG AND NLO+NLL COMPUTATION
- GLUONS WITH $m_b \leq p_T \leq m_H$ are treated as soft in NLO+NLL (no effect on b loop), while they do affect the b loop in POWHEG approach \rightarrow neither approach fully captures all the relevant physics

HQ MASSES IN HIGGS PRODUCTION

- EFFECT OF FINITE m_B IS VISIBLE AT SMALL p_T
- **DISCREPANCY** BETWEEN POWHEG AND NLO+NLL COMPUTATION
- GLUONS WITH $m_b \leq p_T \leq m_H$ are treated as soft in NLO+NLL (no effect on b loop), while hey do affect the b loop in POWHEG approach \rightarrow neither approach fully captures all the relevant physics
- FIXED by treating resummation separately for b loop: Only gluons with $p_T \lesssim M_b$ resummed by choice of resummation scale

JET VETOS+ HQ MASSES!

(Banfi, Monni, Zanderighi, 2013)

- ZERO-JET VETO XSECT & EFFICIENCY COMPUTED WITH FULL INCLUSION OF BOTTOM % TOP MASSES UP TO NNLO+NNLL
- MULTISCALE, NON FACTORIZED $\ln \frac{m_b}{p_T^{\text{veto}}}$ in $p_T^{\text{veto}} > m_b$ region
- m_T DOMINANT; m_B , m_t CANCELLATION, GENERALLY SMALL CORRECTIONS UNLIKE p_T DISTRIBUTION: WHY?

JET VETOS+ HQ MASSES!

(Banfi, Monni, Zanderighi, 2013)

- ZERO-JET VETO XSECT & EFFICIENCY COMPUTED WITH FULL INCLUSION OF BOTTOM % TOP MASSES UP TO NNLO+NNLL
- MULTISCALE, NON FACTORIZED $\ln \frac{m_b}{p_T^{\text{veto}}}$ in $p_T^{\text{veto}} > m_b$ region
- m_T DOMINANT; m_B , m_t CANCELLATION, GENERALLY SMALL CORRECTIONS UNLIKE p_T DISTRIBUTION: WHY?
- LARGE EFFECTS AT NLO+NLO, SMALL AT NNLO+NNLO: RESUMMATION PERTURBATIVE!

MATCHING: FIXED ORDER, RESUMMATION, SHOWER

- HIGGS PRODUCTION AT LHC (ESPECIALLY IN GLUON FUSION) SITS IN THE TRANSITION REGION \Rightarrow MUST CONSIDER BOTH & MATCH RESUMMATION AND FIXED ORDER
- ACCURATE FINAL STATE: BOTH MERGED WITH PARTON SHOWER!
- SEVERAL RECENT MERGING ATTEMPS (Alioli, Hamilton, Re, 2011; Hoeche, Krauss, Schönherr, Sieger 2012; Frederix, Frixione, 2012; Platzer, 2012; Prestel and Lönnblad, 2012) SEE PRESTEL'S TALK
- FULL NLO+NLL ACCURACY ACHIEVED:
 - GENEVA (SCET-BASED): APPLIED TO THRUST IN e^+e^- , (Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh, Zuberi, 2012); GENERAL THEORY AVAILABLE (Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi, 2013)
 - NNLOPS: FULL NLO+NLL ACCURACY ACHIEVED FOR H/W/Z+0/1 JET (Hamilton, Nason, Oleari, Zanderighi, 2012); NNLO+NLL ACHIEVED FOR HIGGS IN GLUON FUSION (Hamilton, Nason, Re, Zanderighi, 2013)

(Hamilton, Nason, Re, Zanderighi, 2013)

• NLO+NLL PRESERVED IN MATCHING TO SHOWER THANKS TO MINLO METHOD

NLOPS VS NLO & SHOWERING

(Hamilton, Nason, Re, Zanderighi, 2013)

- NLO+NLL PRESERVED IN MATCHING TO SHOWER THANKS TO MINLO METHOD
- FIXED ORDER (HNNLO) FAILS AT LOW p_T (NO RESUMMATION) AND HIGH p_T DUE TO FIXED (LOW) FACT. SCALE ENHANCED FIXED ORDER OK AT LARGE P_t ; PARTON LEVE RESUMMED VERY CLOSE TO FINAL PYTHIA SHOWERED RESULT

NLOPS vs NLO & showering

(Hamilton, Nason, Re, Zanderighi, 2013)

- NLO+NLL PRESERVED IN MATCHING TO SHOWER THANKS TO MINLO METHOD
- FIXED ORDER (HNNLO) FAILS AT LOW p_T (NO RESUMMATION) AND HIGH p_T DUE TO FIXED (LOW) FACT. SCALE ENHANCED FIXED ORDER OK AT LARGE P_t ; PARTON LEVE RESUMMED VERY CLOSE TO FINAL PYTHIA SHOWERED RESULT
- NNLO ACCURACY OBTAINED BY REWEIGHTING; FURTHER MADE p_T DEPENDENT

NLOPS VS NLO & SHOWERING 10^{0} $d\sigma/dp_{\rm T}^{\rm H}~[pb/GeV]$ HJ-Minlo PY 10^{-1} HJ-MINLO NLO Hj-Minlo LH HNNLO 10^{-2} 10^{-3} 1.2Ratio 1.00.80 50100250300 150200 p_{T}^{H} [GeV] NNLOPS vs NLOPS 10^{0} $d\sigma/dp_{\rm T}^{\rm H}~[pb/GeV]$ $1.516 \times H_{I-MINLO}$ PY 10^{-1} H1_MINLO PY NNLOPS $3 = \infty$ 10^{-2} 10^{-3} Ratio 1.00.750 $p_{\rm T}^{\rm H} [{\rm GeV}]$ 200 100 250 $\overline{300}$ 0 NNLOPS vs NNLL 10^{0} $d\sigma/dp_{\rm T}^{\rm H}~[pb/GeV]$ NNLOPS HQT - 10^{-10} 10^{-2} 10^{-3} 1.4Ratio 1.00.6) 150 p_{T}^{H} [GeV] 200 2500 50100300

(Hamilton, Nason, Re, Zanderighi, 2013)

- NLO+NLL PRESERVED IN MATCHING TO SHOWER THANKS TO MINLO METHOD
- FIXED ORDER (HNNLO) FAILS AT LOW p_T (NO RESUMMATION) AND HIGH p_T DUE TO FIXED (LOW) FACT. SCALE ENHANCED FIXED ORDER OK AT LARGE P_t ; PARTON LEVE RESUMMED VERY CLOSE TO FINAL PYTHIA SHOWERED RESULT
- NNLO ACCURACY OBTAINED BY REWEIGHTING; FURTHER MADE p_T DEPENDENT
- GOOD AGREEMENT WITH ANALYTIC p_T RESUMMATION (HQ_T)

SUMMARY

- STEADFAST PROGRESS
 - RESUMMATION
 - $2 \rightarrow 2 \text{ at NNO}$
 - Towards N^3LO resummation with final states
- PHENOMENOLOGICAL CHALLENGES
 - PDFs
 - & $\alpha_s \Rightarrow$ A SHOW-STOPPER?
- NEW THEORETICAL IDEAS
 - SPIN CORRELATIONS
 - INTERFEROMETRY
- STRETCHING THE THEORY
 - MULTISCALE RESUMMATION
 - MATCHING TO MONTE CARLO

"...the period of the famous triumph of quantum field theory. And what a triumph it was, in the old sense of the word: a glorious victory parade, full of wonderful things brought back from far places to make the spectator gasp with awe and laugh with joy" (Sydney Coleman, 1988)

APPROXIMATE N³LO RESULTS LOWER ORDERS

- APPROX MATCHED LARGE-SMALL N RESUMMATION + ANALITICITY \Rightarrow OPTIMAL
- **N-SOFT** EXPANDED RESUMMATION \Rightarrow FAIR
- SOFT-0 x-SPACE RESUMMATION \Rightarrow BAD x-SPACE RESUMMATION VIOLATES MOMENTUM CONSERVATION BY SUBLEADING TERMS (Catani, Mangano, Nason, Trentadue, 1996)

NNLO

APPROXIMATE N³LO RESULTS

gg channel only, 8 TeV, μ_{f} =m_h

- APPROXIMATE RESULT CLOSE TO THAT FOUND ASSUMING THAT SCALE DEP AT N^3LO is weaker than at NNLO
- ESSENTIALLY COINCIDES WITH THAT DERIVED FROM SIMPLE PROPORTIONALITY WITH K = 25 DEP. DETERMINED ASSUMING K = 25;