Combining Resummed Higgs Predictions Across Jet Bins

Frank Tackmann

Deutsches Elektronen-Synchrotron

SM@LHC Madrid, April 09, 2014

Introduction ●00000		Resummation	Combination	
N .	1.11	~		

Determining Higgs Couplings

- Every measurement is also an indirect search
- ⇒ Discovering BSM effects in Higgs couplings at the few to $\mathcal{O}(10\%)$ level requires detailed and precise control of QCD effects at the same level including reliable theory uncertainties and correlations.

Introduction	Resummation	Combination	
00000	000000	000000	
Event Categoriz	ation and Jet Binn	ina	

Separating data into exclusive categories is advantageous when backgrounds depend on kinematics and jet multiplicity

- Substantial gain by optimizing analysis in each category or jet bin
- *H*→*WW*: Exclusive 0-jet and 1-jet bins important to control top background

Ultimately, the relevant quantities that are measured and thus to be predicted are the fiducial cross sections in each category or jet bin

- In the end, we want to combine results from all jet bins (and in fact from all categories and channels)
- ⇒ Consistent theory description, uncertainties & correlations are essential

00000	0000000	000000	
Differential	Cross Section M	easurements	

 It is invaluable to have measurements of the actual fiducial cross sections (actually more important than μ-values, at least in my mind)

<u> </u>	-		
000000			
Introduction	Resummation	Combination	

Substantial Theory Progress over the Last Years

Resummation and uncertainties for excl. jet cross sections

- Beam thrust: Berger, Marcantonini, Stewart, FT, Waalewijn [0910.0467, 1012.4480]
- FO jet-bin uncertainties: Stewart, FT [1107.2117], Bernlochner, Gangal, Gillberg, FT [1302.5437, 1307.1347]

Jet algorithms and jet p_T

- H+0 jets: Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998, 1308.4634]
- *H*+0 jets: Becher, Neubert, Rothen [1205.3806, 1307.0025]
- → H+0 jets: Stewart, FT, Walsh, Zuberi [1206.4312, 1307.1808]
- → H+1 jets: Liu, Petriello [1210.1906, 1303.4405]
 - α_s^3 jet clustering effects: Alioli, Walsh [1311.5234]
 - VH+0 jets: Shao, Li, Li [1309.5015]
 - VH+0 jets: Liu, Li [1401.2149]

This talk

• combined 0+1 jet resummation: Boughezal, Liu, Petriello, FT, Walsh [1312.4535]

For any type of exclusive measurement or restriction

 Constraining radiation into soft and collinear regions causes large logs (due to sensitivity to soft/collinear divergences)

Example: jet p_T veto in $gg \rightarrow H + 0$ jets

Restricts ISR to p_T < p_T^{cut}
 (→ Sudakov double logs from *t*-channel sing.)

$$\sigma_0(p_T^{
m cut}) \propto 1 - rac{lpha_s}{\pi} \, C_A 2 \ln^2 rac{p_T^{
m cut}}{m_H} + \cdots$$

⇒ Perturbative corrections increase for smaller p_T^{cut} (stronger restriction) ⇒ Should be resummed to all orders to obtain reliable precise predictions

Theory I	Incertainties in Jet F	Binning	
000000	0000000	000000	
Introduction	Resummation	Combination	Summary

2

$$\sigma_{ ext{total}} = \int_{0}^{p_T^{ ext{cut}}} \mathrm{d}p_T \, rac{\mathrm{d}\sigma}{\mathrm{d}p_T} + \int_{p_T^{ ext{cut}}}^{\infty} \mathrm{d}p_T \, rac{\mathrm{d}\sigma}{\mathrm{d}p_T} \equiv \sigma_0(p_T^{ ext{cut}}) + \sigma_{\geq 1}(p_T^{ ext{cut}})$$

Complete description requires full theory covariance matrix for $\{\sigma_0, \sigma_{\geq 1}\}$ [Berger, Marcantonini, Stewart, FT, Waalewijn; Stewart, FT]

 General physical parametrization in terms of 100% correlated and 100% anticorrelated pieces

$$C = \begin{pmatrix} (\Delta_0^{\mathbf{y}})^2 & \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} \\ \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} & (\Delta_{\geq 1}^{\mathbf{y}})^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\mathrm{cut}}^2 & -\Delta_{\mathrm{cut}}^2 \\ -\Delta_{\mathrm{cut}}^2 & \Delta_{\mathrm{cut}}^2 \end{pmatrix}$$

• Absolute "yield" uncertainty is fully correlated between bins

- $\Delta_{\text{total}}^{y} = \Delta_{0}^{y} + \Delta_{>1}^{y}$ reproduces uncertainty in σ_{total}
- "Migration" unc. Δ_{cut} due to binning (must drop out in sum $\sigma_0 + \sigma_{\geq 1}$)
 - $p_T^{ ext{cut}} \sim m_H$: $\Delta_{ ext{cut}}$ small and can be neglected (FO region)
 - $p_T^{
 m cut} \ll m_H$: $\Delta_{
 m cut}$ important, associated with unc. in $p_T^{
 m cut}$ log series

Introduction e resummation e resummation e resummation e resummation e resummation for p_T^{jet}

For $R^2 \ll 1$ local jet clustering algorithm factorizes into purely soft and collinear jets

Allowing to factorize cross section for $p_T^{\text{jet}} < p_T^{\text{cut}}$ $\sigma_0(p_T^{\text{cut}}) = H(Q,\mu)B^{\text{jet}}(R, p_T^{\text{cut}}, \mu, \nu)B^{\text{jet}}(R, p_T^{\text{cut}}, \mu, \nu)S^{\text{jet}}(R, p_T^{\text{cut}}, \mu, \nu)$

Logarithms are split apart and resummed using coupled RGEs in μ and ν

[Using SCET-II with rapidity RGE by Chiu, Jain, Neill, Rothstein]

Renormalization scale

Resummation region

• Logs ("singular") dominate and are resummed to all orders (remaining "nonsingular" are power-suppressed)

$$\mu_H \sim -\mathrm{i} m_H \,, \ \ \mu_S \sim p_T^{\mathrm{cut}} \,,
u_S \sim p_T^{\mathrm{cut}} \,, \ \ \mu_B \sim p_T^{\mathrm{cut}} \,,
u_B \sim m_H$$

Fixed-order region

- Fixed-order expansion for H+1 hard jet applies
- Resummation must be turned off (singular/nonsingular separation becomes arbitrary with large cancellations between them)

$$\mu_B, \, \mu_S, \,
u_S, \,
u_B
ightarrow |\mu_H| = \mu_{
m FO} \sim m_H$$

Frank Tackmann (DESY)

Transition region

- Theoretically the most subtle but often the most relevant in practice
- Profile scales for $\mu_B, \mu_S, \nu_B, \nu_S$ provide smooth transition between resummation and fixed-order limits
 - ⇒ Ambiguity is a scale uncertainty → reduces going to higher orders

Introduction Resummation Combination Summary

- Take max of collective up/down variation (+ where resum. turns off)
 - Equivalent to overall FO μ variation keeping logs fixed
 - Reproduces $\Delta_{>0}^{\rm FO}$ for large $p_T^{\rm cut}$

$$\Rightarrow$$
 Yield unc. $\Delta^{\mathrm{y}}_i = \Delta_{\mu}$

Introduction Resummation Combination Summary

- Take max of collective up/down variation (+ where resum. turns off)
 - Equivalent to overall FO μ variation keeping logs fixed
 - Reproduces $\Delta_{>0}^{\rm FO}$ for large $p_T^{\rm cut}$

$$\Rightarrow$$
 Yield unc. $\Delta^{\mathrm{y}}_i = \Delta_{\mu}$

- Take maximum from separately varying all low scales
 - Constrained to preserve canonical scaling relations
 - Probes unc. in log series

 \Rightarrow Migration unc. $\Delta_{ ext{cut}} = \Delta_{ ext{resum}}$

< 67 →

Resummation Transition Fixed Order

• Resummed pert. theory shows good convergence (NNLL_{pT} refers to counting logarithms $\ln(p_T^{cut}/m_H)$ only, but not $\ln R^2$)

Resummation Transition Fixed Order

- Resummed pert. theory shows good convergence (NNLL_{pT} refers to counting logarithms $\ln(p_T^{cut}/m_H)$ only, but not $\ln R^2$)
- Resummation framework allows assessment of full theory unc. matrix (i.e. *without* any assumptions on correlations between different cross sections)

$$C = egin{pmatrix} \Delta^2_{\mu 0} & \Delta_{\mu 0} \, \Delta_{\mu \geq 1} \ \Delta_{\mu \geq 1} & \Delta^2_{\mu \geq 1} \end{pmatrix} + egin{pmatrix} \Delta^2_{
m resum} & -\Delta^2_{
m resum} \ -\Delta^2_{
m resum} & \Delta^2_{
m resum} \end{pmatrix}$$

Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]

 p_{T}^{cut} [GeV]

- Use QCD NNLL resummation for p_T^H [Bozzi, Catani, Grazzini] plus necessary correction terms to go from p_T^H to p_T^{jet}
- Consider jet-veto efficiency as the primary quantity to resum, assume efficiency and total cross section as uncorrelated

Frank Tackmann (DESY)

< 67 →

 p_T^{cut} [GeV]

Banfi, Monni, Salam, Zanderighi [1203.5773, 1206.4998]

- Use QCD NNLL resummation for p_T^H [Bozzi, Catani, Grazzini] plus necessary correction terms to go from p_T^H to p_T^{jet}
- Consider jet-veto efficiency as the primary quantity to resum, assume efficiency and total cross section as uncorrelated

Frank Tackmann (DESY)

< 67 →

Introd	
000	000

Resummation

Combination

Comparison to BNR

Becher, Neubert, Rothen [1205.3806, 1307.0025]

- Use SCET-II together with "collinear anomaly" treatment to exponentiate rapidity logarithms
- Different organization of *H*, *B*, *S*, and nonsingular (similar uncertainties at highest order, but much poorer convergence)

Introduction	Resummation 000000●	Combination		
Exclusive Higgs	+ 1 jet bin			

Resummation for 1-2 jet boundary $p_{T2}^{\text{jet}} < p_{T2}^{\text{cut}}$ is more tricky than for 0-1 jet boundary $p_{T1}^{\text{jet}} < p_{T1}^{\text{cut}}$

- multiple scales: $p_{T2}^{ ext{jet}} \leq p_{T}^{ ext{cut}} < p_{T1}^{ ext{jet}} < m_H$
- Jet-algorithm dependence from both the signal jet and the vetoed jet

For $p_{T2}^{ ext{cut}} \ll p_{T1}^{ ext{jet}} \sim m_H$ [Liu, Petriello]

- Analogous setup using μ-ν RGE with profile scales applies
- Resummation to NLL'+NLO

Combining Resummed Higgs PredictionsAcross Jet Bi

Introduction 000000	Resummation	Combination ●00000	

0-jet Bin Resummation

Resummation for leading jet p_T provides

Exclusive 1-jet bin is a multi-scale problem:

 $p_{T2}^{ ext{jet}} \le p_T^{ ext{cut}} < p_{T1}^{ ext{jet}} < m_H$

2014-04-09 17 / 20

 Introduction
 Resummation
 Combination
 Surrout

 Combined 1-jet Bin Resummation
 October
 Surrout

Scheme B: Everything matched to strict α_s^2

- 0-jet bin: NNLL'+NNLO with real $\mu_H = m_H$
- 1-jet bin: NLL'+NLO

Important consistency checks

Combined 1-jet Bin Resummation

Scheme A (default): Include important α_s^3 virtual corrections

- 0-jet bin: NNLL'+NNLO with complex $\mu_H = -im_H$
- 1-jet bin: NLL'+NLO plus H + j NNLO₁ virtuals

Important consistency checks

- Reduces theory uncertainties on signal yield in $H \rightarrow WW$ by about factor of 2
- Framework allows us to estimate full 3x3 theory correlation matrix
 - ► General parametrization in terms of yield, 0-1 migration, and 1-2 migration

Introduction 000000	Resummation	Combination	Summary
Summary			

For detailed Higgs measurements

- Differential and exclusive jet measurements are of key importance
 - Requires precise resummed calculations
 - Precision demands reliable unc. and correlations (just small is not enough...)

Higher-order resummation for $p_T^{ m jet}$

- H+0-jet cross section known to NNLL'+NNLO
- H+1-jet cross section known to NLL'+NLO
- ⇒ Framework to combine both including uncertainties and correlations (ready to be used ...)

Ultimate dream/goal:

- Global coupling fit using fully corrected fiducial cross sections
- ⇒ Requires experiments to measure them and theory to compute them ...

< A >

Backup Slides

< 67 ►

Soft-Collinear Effective Theory (SCET)

Physical picture: Contributions at different energy scales

 \rightarrow Factorization: $d\sigma = Hard \otimes PDFs \otimes ISR \otimes FSR \otimes Soft$

SCET is the effective field theory of QCD in the soft and collinear limit [Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

- Power counting and expansion in soft and collinear limits manifest at the Lagrangian level
- Systematic separation of different relevant energy scales

Frank Tackmann (DESY)

Backup ●00000

Backup 000000

Soft-Collinear Factorization (Schematically)

Cross section after matching from QCD onto SCET

$$\sigma = \sum_{k,l} oldsymbol{C}_k^\dagger oldsymbol{C}_l ig\langle O_k^\dagger \, \mathcal{M} \, O_l ig
angle$$

- Matching coeffs C_i contain process dependence and hard kinematics
- Measurement function *M* defines observable

SCET operators factorize into soft and collinear (universal)

$$O_k = O_{n_{a,b}} \times O_{n_j} \times O_s$$

Soft-collinear factorization requires that $\mathcal M$ also factorizes to all orders

 $\mathcal{M} = \mathcal{M}_{n_{a,b}} \otimes \mathcal{M}_{n_{j}} \otimes \mathcal{M}_{s} + \text{power corrections}$

Together this factorizes the cross section

$$\sigma = \underbrace{|C|^2}_{H} \times \underbrace{\langle O_{n_{a,b}}^{\dagger} \mathcal{M}_{n_{a,b}} O_{n_{a,b}}^{\dagger} \rangle}_{B_{a,b}} \otimes \underbrace{\langle O_{n_J}^{\dagger} \mathcal{M}_{n_j} O_{n_j}^{\dagger} \rangle}_{J_j} \otimes \underbrace{\langle O_{n_s}^{\dagger} \mathcal{M}_s O_s^{\dagger} \rangle}_{S}$$

< A >

Backup 000000

Jet Algorithm Effects

"Local" jet veto depends on a jet clustering algorithm with jet size R

$$\mathcal{M}^{ ext{jet}}(p_T^{ ext{cut}}) = \prod_{ ext{jets } j(R)} hetaig(p_{Tj} < p_T^{ ext{cut}}ig)$$

Algorithm effects start at $\mathcal{O}(\alpha_s^2)$. Consider correction relative to global veto

 $\mathcal{M}^{\rm jet} = \left(\mathcal{M}_{n_a}^G + \Delta \mathcal{M}_{n_a}^{\rm jet}\right) \left(\mathcal{M}_{n_b}^G + \Delta \mathcal{M}_{n_b}^{\rm jet}\right) \left(\mathcal{M}_s^G + \Delta \mathcal{M}_s^{\rm jet}\right) + \delta \mathcal{M}^{\rm jet}$

Clustering within each sector $\sim \mathcal{O}(\ln^n R), \ \mathcal{O}(R^n)$

- \Rightarrow Relevant for small $R \ll 1$
 - Included in beam (collinear) and soft functions

Clustering *between* sectors $\sim \mathcal{O}(R^n)$

- \Rightarrow Relevant for large $R \sim 1$
 - Violates simple factorization into collinear and soft

Numerical Jet Algorithm Effects at NNLO

For R = 0.4 (and also R = 0.5)

- Clustering ln R² contributions are sizable
- Uncorrelated emission contributions (soft-collinear mixing) can safely be treated as O(R²) power suppressed

 \Rightarrow Suggests that one should count $R^2 \sim p_T^{
m cut}/m_H \ll 1$

Backup

Perturbative Structure - Singular vs. Nonsingular

singular: large logs to be resummed

constant c_k,-1 belongs to singular

nonsingular: $\mathcal{O}(\tau)$ power corrections

• $f_k^{\rm ns}(au)$ at most integrable divergent

•
$$F_k^{
m ns}(au^{
m cut} o 0) o 0$$

Backup

Backup

Resummation + Fixed Order Matching

ln	$\ln \sigma_0(p_T^{ ext{cut}}) \sim \sum_n lpha_s^n \ln^{n+1} rac{p_T^{ ext{cut}}}{m_H} \left(1 + lpha_s + lpha_s^2 + \cdots ight) \sim ext{LL+NLL+NNLL} + \cdots$						
	Resummation	Fixed-order	r corrections	Resummation input			
	conventions:	matching (sing.)	full FO (+ nons.)	$\gamma^{\mu, u}_{H,B,S}$	Γ_{cusp}	β	
	LL	1	-	-	1-loop	1-loop	
	NLL	1	-	1-loop	2-loop	2-loop	
	NLL+NLO	1	$lpha_s$	1-loop	2-loop	2-loop	
	NLL'+NLO	$lpha_s$	$lpha_s$	1-loop	2-loop	2-loop	
	NNLL+NLO	α_s	$lpha_s$	2-loop	3-loop	3-loop	
	NNLL+NNLO	α_s	$lpha_s^2$	2-loop	3-loop	3-loop	
	NNLL'+NNLO	α_s^2	$lpha_s^2$	2-loop	3-loop	3-loop	
	N ³ LL+NNLO	α_s^2	$lpha_s^2$	3-loop	4-loop	4-loop	

"matching": singular FO corrections that act as boundary conditions in the resummation (αⁿ_s corrections to *H*, *B*, *S* reproduces full αⁿ_s singular)

• "full FO": adds FO nonsingular terms not included in the resummation

Frank Tackmann (DESY)

< 67 ►