Measurement of Higgs boson differential fiducial cross sections at the LHC

Hugh Skottowe Harvard University

on behalf of the ATLAS Collaboration







# Introduction



- Focus so far on discovery and signal strength
- More recently moving towards measuring ۲ properties including cross section and comparisons to NLO/NNLO predictions
- Measuring cross section within fiducial region s = 8 TeV Ldt = 20.7 fb of detector coverage reduces model dependence & theoretical uncertainties
- Differential cross sections measured in  $H \rightarrow \gamma \gamma$ :
  - Allow detailed checks of Higgs kinematics
  - Test QCD predictions (including of ggH cross section)
  - Compare distributions against predictions of SM and other theories

Plots from arXiv:1307.1427, Phys.Lett.B 726 (2013) 88

ATLAS

 $H \rightarrow \gamma \gamma$  $\mu = 1.55^{+0.33}_{-0.28}$ Low p. Hiah p  $H \rightarrow ZZ^*$ VBF+VH-I .45~\_\_\_\_\_ ategorie  $\rightarrow h/h$ 0±1 io ±0.22 2 iet VRI Comb. H→γγ, ZZ\*, WW\* ±0.1 s = 7 TeV Ldt = 4.6-4.8 fb Signal strength (µ)

+ σ(stat

σ(sys)

σ**(theo**)

Total uncertainty

± 1σ on μ

# Introduction: fiducial differential cross sections

Some possible variables to measure for differential cross sections:

- $p_{\rm T}^{\rm H}$ : probes perturbative QCD calculations
- $y_H$ : sensitive to QCD radiative corrections and proton PDFs
- jet multiplicity: sensitive to relative rates of production modes (ggH, VBF/VH/ZH, ttH)
- jet veto fractions: sensitive to relative rates of production modes, and strong coupling  $\alpha_{\rm s}$
- p<sub>T</sub><sup>j1</sup>: in ggH corresponds to hardest QCD radiation, and can be compared to higher order predictions
- $\Delta \phi_{jj}$ : for ggH and VBF, sensitive to Higgs spin and CP
- $p_{\rm T}^{Hjj}$ : discriminates between ggH and VBF in 2-jet events
- Collins-Soper helicity angle  $|\cos \theta^*|$ : sensitive to spin/parity







2014/04/10

3/14)

# Overview of ATLAS $\gamma\gamma$ result

#### First public result measuring differential cross section of the Higgs:

Differential cross sections of the Higgs boson measured in the diphoton decay channel with the ATLAS detector using 8 TeV proton-proton collision data, ATLAS-CONF-2013-072

Event selection:

- Diphoton trigger, with  $p_{T}$  cuts >35GeV and >25GeV
- Photon energy calibration from MC, with corrections from  $Z \rightarrow ee$  data
- Primary Vertex selected with a neural network, using calo pointing information, photon conversion tracks, and other tracks in event
  - PV z coordinate is used to correct  $\eta$  and  $E_{\rm T}$  of photons
- Photon  $|\eta| < 2.37$ 
  - And exclude crack between barrel/endcap calorimeter:  $|\eta| \notin [1.37, 1.56]$
- Calo isolation: <6GeV in cone of 0.4; Track isolation: <2.6GeV in cone of 0.2
- $E_{\rm T}/m_{\gamma\gamma}$  > 0.35 and 0.25 for leading and sub-leading photons
- Require  $105 < m_{\gamma\gamma} < 160 \,\text{GeV}$
- Jet selection: anti- $k_t$  0.4, with  $p_T$  > 30GeV, |y| < 4.4

# Fiducial region definition

- Photon  $|\eta| < 2.37$ 
  - Note: crack 1.37-1.56 not excluded
- Photon isolation: Sum over all stable particles (excluding muons and neutrinos) within cone of  $\Delta R$ <0.4 around photon:  $\sum p_T^2 < 14 \text{ GeV}$ 
  - Corresponds closely with reconstruction-level calorimeter isolation cut at 6 GeV
  - Reduces dependence of measured cross sections on model used for unfolding
- $E_{\rm T}/m_{\gamma\gamma}$  > 0.35 and 0.25 for leading and sub-leading photons
- Require  $105 < m_{\gamma\gamma} < 160 \, \text{GeV}$

### Analysis outline

- Divide dataset into bins of observables (e.g.  $p_{\rm T}^{\gamma\gamma}$  0-20, 20-30, 30-40 etc.)
- Simultaneous S + B fit in all bins, with  $m_H$  floated and common between bins
- Look at fitted signal yield S in each bin
  - At this stage, comparisons with theory require full simulation
- Unfold to particle level, compare with theory predictions
  - Direct comparisons with range of theories possible without full simulation



# Distributions of $m_{\gamma\gamma}$



 Categorize events according to number of selected jets

> (for the example of jet multiplicity differential cross section)

SM@LHC 2014, Madrid

#### Fitted event yields



- Fitted signal yield at reconstruction level:  $p_{T}^{\gamma\gamma}$ ,  $|y_{\gamma\gamma}|$ ,  $|\cos \theta^{*}|$ ,  $p_{T}^{j1}$
- Unbinned fit in m<sub>γγ</sub> for each bin of observable
- Note: SM predictions here (purple hatching) require full detector simulation

#### Fitted event yields



 Fitted signal yield:  $N_{\text{iets}}, \Delta \varphi_{ii}, p_{\text{T}}^{\gamma \gamma j j}$ 

- Systematics from signal extraction in grey (fit and background subtraction)
- Signal uncertainties in purple hatching:
  - Theoretical (QCD scale, PDF,  $H \rightarrow \gamma \gamma$ branching, underlying event);
  - Jet bin migration (from jet energy scale & resolution)

2014/04/10

# Unfolding to particle level

- Calculate yields in simulation, in each bin of each observable, at particle level and at reconstruction level
- Apply bin-by-bin multiplicative correction factor:

$$C_{\text{bin},i} = n_{\text{bin},i}^{\text{particle}-\text{level}} / n_{\text{bin},i}^{\text{reconstructed}}$$

- Define fiducial region at particle level (close to reconstruction level):
  - Same kinematic cuts as reconstruction level
  - Include calorimeter crack (1.37<| $\eta$ |<1.56)
- Using unfolded distributions allows for direct comparison with predictions



### Differential cross section results



- Differential cross sections:  $p_T^{\gamma\gamma}$ ,  $|y_{\gamma\gamma}|$ ,  $|\cos \theta^*|$ ,  $p_T^{j1}$
- All detector effects corrected for here
- Any external theory prediction can be directly compared (without needing to simulate the ATLAS detector)

2014/04/10

SM@LHC 2014, Madrid

Hugh Skottowe

#### Differential cross section results



- Differential cross sections:  $N_{jets}$ , Jet Veto Fraction,  $\Delta \varphi_{jj}$ ,  $p_T^{\gamma\gamma jj}$
- All detector effects corrected for here
- Any external theory prediction can be directly compared (without needing to simulate the ATLAS detector)

2014/04/10

SM@LHC 2014, Madrid

# Comparison with Standard Model predictions

- Current uncertainties are dominated by low statistics
- Agreement with SM is good within current uncertainties, with  $\chi^2$  probabilities:

|          | Njets | $p_{\rm T}^{\gamma\gamma}$ | $ y_{\gamma\gamma} $ | $ \cos \theta^* $ | $p_{\mathrm{T}}^{j1}$ | $\Delta \varphi_{jj}$ | $p_{\mathrm{T}}^{\gamma\gamma jj}$ |
|----------|-------|----------------------------|----------------------|-------------------|-----------------------|-----------------------|------------------------------------|
| POWHEG   | 0.54  | 0.55                       | 0.38                 | 0.69              | 0.79                  | 0.42                  | 0.50                               |
| MINLO    | 0.44  | _                          | _                    | 0.67              | 0.73                  | 0.45                  | 0.49                               |
| HRes 1.0 | -     | 0.39                       | 0.44                 | _                 | -                     | -                     | -                                  |

- Notes on generators:
  - POWHEG+PYTHIA8: norm. to NNLO QCD + NLO EW
  - POWHEG+MINLO: H+1jet NLO, showered with PYTHIA8, using CT10 PDFs
  - HRes 1.0: NNLO + NNLL, using MSTW 2008 NNLO PDFs and infinite top quark mass approximation

# Summary

- First differential cross sections of the Higgs boson, measured in  $H \rightarrow \gamma \gamma$  with 20.3 fb<sup>-1</sup> of  $\sqrt{s}$ =8 TeV data
- Unfolded distributions can be compared to any particle-level predictions, without needing full detector simulation
  - Paper in preparation, and data will be released in HepData together with Rivet code
  - Released data will include full experimental covariance in each bin, usable for external hypothesis tests
- Look forward to new 13-14 TeV data in 2015
  - Higher statistics will reduce uncertainties, allow us to probe effects at ~10% level, including NLO/NNLO differences, quark mass effects

2014/04/10 SM@LHC 2014, Madrid Hugh Skottowe Higgs boson differential fiducial cross section measurements (15/14)

# The ATLAS detector



(from JINST 3 S08003)

### Fractional uncertainty on differential cross sections



2014/04/10

### Fractional uncertainty on differential cross sections





2014/04/10