BLM developments in the CLIC Test Facility (CTF3)

3rd oPAC Topical workshop on Beam diagnostics

- Motivation: BLM requirements
- Investigated BLM technologies
- Measurements at the TBL
- Diamond test at Califes

E. Branger, F. Burkart, L. Devlin, E. B. Holzer, J. van Hoorne, M Kastriotou, S. Mallows, <u>E. Nebot del Busto</u>,
O. Stein, S. Vinogradov, C. P. Welsch and M. Zingl

Motivation

- Design of a BLM system for CLIC
 - Two beam acceleration scheme:
 - Main Beam: Accelerating beam (9 GeV → 3 TeV) for luminosity production 4 A, 0.5ns bunch spacing, 150 ns
 - Drive Beam: Decelerating (2.4 GeV → 240 MeV) beam for RF power extraction (101 A, 250 ns, bunch spacing 0.083 ns)
 - Disentangle losses from both beams (X-talk)
 - Damping rings
 - Large amounts of synchrotron radiation (SR)
 - Continuous < 398m 2.6 GeV ring, t_{rev}=1.3µs, bunch spacing 0.5 ns, 150 ns pulse
- A BLM system based on (LHC-like) ionization chambers fulfills all the requirements (for the Two Beam Module):
 - ✓ Dynamic range: 10^{+6} / Sensitivity: 7 x 10^{-9} Gy / time response < 8 ms
 - Number of required BLMs > 40000
 - No temporal profile of the loss within the bunch train
- Investigating cost effective, faster and insensitive to synchrotron radiation
 - Diamond (pCVD)
 - ACEM (Al Cathode Electron Multiplier)
 - Crystal Cherenkov radiator (PEP-II)
 - Optical fibers (Cherenkov radiator)

BLMs at the CLIC Test Facility CTF3

BLMs at the CLIC Test Facility CTF3

- Pure Silica 200um core multimode (NA = 0.22) optical fiber located 28cm on top of the beam line
- Detectors located 10cm left and 20/30/40 cm (pCVD/ACEM/PEP-II) below the beam line

- Bias Voltages: 500 V positive for pCVD and negative for ACEM/PEP-II (10⁺⁴ gain) and 71.2 (MPPC gain 3.4 10⁺⁵ gain)
- Signals terminated on 50 Ω and read via 8 bit ADC

QUASAR

TBL measurements

• Beam transmission 100% (measured by BPMs): 16A and 150 ns pulse

Detector	Measured Charge (nC)	Simulated min charge (10 ⁻²¹ C/e)	Simulated max charge (10 ⁻²¹ C/e)	Mean (10 ⁻²¹ C/e)	Estimated Beam Loss (mA)
ACEM	1.21± 3.9%	9.3	50.0	23.0	51
PEP-II	$1.26 \pm 13\%$	11.0	110.0	42.0	30
pCVD	$4.20 \pm 15\%$	9.7	40.0	21.0	20
Fiber (down)	2.36 ± 2.4%	2.5	19.0	9.0	260
Fiber (up)	$0.514 \pm 4.4\%$	0.037	4.4	1.4	360

oPAC - Beam diagnostics

9-5-2014

TBL measurements II

- Parasitic measurement for direct comparison of ACEM and Ionization Chambers
- Sensitivity difference due to large active volume of Ionization Chamber (1.5 | N₂)
- Pulse of ~250ns not followed by IC (slow time response)

UASAI

Diamond at Califes

- (10 x 10 mm²) 500 µm pCVD
 - 15 cm distance from beam line
 - HV power supply in klystron gallery
 - DAQ: remote scope readout
 - 20dB amplifier
- Beam Losses at screen downstream of dipole
- Good quality and reproducibility of signals
- Measured signals for beam charges (single bunch) of 0.01-0.06 nC

Diamond at Califes

- Design and installation of beam line for particle detector test
 - Linear stages system
 - Beam window
- Characterization of diamond BLMs:
 - bunch intensities $1 \times 10^{+7} 1 \times 10^{+10}$ electrons
 - Single bunch to 300 bunches (0.06 ns spacing)

- Cross calibration measurements with other detectors
 - e.g characterization of novel active materials (sapphire)
 - Probing internal structure of particle detectors

9-5-2014

UASAR

Summary and conclusions

- BLM system based on IC fulfills the machine protection requirements of the CLIC
 - More than 40000 BLMs to cover the 40km LINACs. Investigating Optical fiber as cost efficient technology
 - Investigating BLMs with time resolutions near bunch spacing in Main Beam: diamond and Cherenkov radiators
- Progress on quantitative estimation of beam losses at CTF3. Signals observed by BLMs consistent with BPM current measurements. Outstanding issues
 - Position resolution: Minimize the effects of modal (light collimation) and material (filtering) dispersion
 - Understanding the best choice of photo sensors (sensitivity, dynamic range and time resolution
- Development of a BLM testing table for a 200 MeV e⁻ beam
 - Set of rails and linear stages to move instrumentation into the beam
 - Response of diamond detectors to high frequency and small transverse size electron beams

Back up Slides

Conceptual Design Report

BLM Requirements (as specified in CDR)

Sensitivity

- Standard Operational Losses
- FLUKA: Loss distributed longitudinally
- Lower Limit of Dynamic Range: 1% loss limit for beam dynamics requirements
- 10⁻⁵ train distributed over MB linac, DB decelerator [NB! Assumed uniform losses along decelerators/linacs]

Example: Spatial distribution of absorbed dose for maximum operational losses distributed along aperture (DB 2.4 GeV) Scaling: 10⁻³ bunch train/875m

Dynamic Range - Upper Limit

- Detect onset of Dangerous losses
- FLUKA: Loss at single aperture
- Upper Limit of Dynamic Range, 10% destructive loss (desirable)
 - 0.1% DB bunch train, 0.001% bunch train MB

Example: Spatial distribution of absorbed dose resulting from loss of 0.01% of 9 GeV MB bunch train at a single aperture

29 January 2013

Sophie Mallows, CLIC Workshop 2013

9-5-2014

QUASAR

Cherenkov-fibre based BLM systems

- When charged particles transverse an optical fibre they produce light within the Cherenkov opening cone ($\cos \theta_C = 1/\beta n$)
- A fraction of light is trapped (total reflexion corecladding) and transported to the fiber end
- The low wavelength side of the spectrum is strongly attenuated by Rayleigh scattering

Figure 6.9: Result for the angular scan measuring the Cherenkov light yield per crossing charged particle with $\beta \approx 1$. The solid lines show the theoretical expected curves, which are computed by scaling the distribution shown in Figure 5.9a down by a factor 0.198. This factor is the result of a joint consideration of the influence of both the attenuation due to the 4 m of fiber and the PDE of the MPPC. The coupling efficiency between fiber and PD is not taken into account.

Cherenkov light spectrum and effect of fibre attenuation

9-5-2014

Photo-sensor investiagations

E. Nebot

Fibre BLMs – γ detectors

- On-going analysis for γ detector selection:
 - Are MPPCs the optimal choice

beginning 2014

Take into account cost but also performance Detective Quantum Efficiency of short pulse detection (1 ns)

MPPC-50 1x1 mm

SensL-20 1x1 mm @5V

M. Kastriotou 4-12-2013 CLIC BI review ⁸ oPAC – Beam diagnostics 9–5–2014

Photon Yield (optical fiber)

QUASAR

Diamond (particle fluence)

oPAC - Beam diagnostics

9-5-2014

F. Burkart/O. Stein

QUASAR

.

Location of BLMS 15.05.2013

Irradiation test

- Three sample fibres irradiated to study the response at 475 nm (MPPC efficiency and photon yield peak):
- Co60 (Mean E =1.25 MeV)
- 10kGy@0.22 Gy/s

M. Kastriotou

4-12-2013

 $1 \text{ MIP} = 2 \text{ MeV/(g/cm2)} = 3.2 \text{ x } 10^{-10} \text{ J/(kg/cm2)}$

 $1Gy = 1 J/kg \rightarrow 3.1 x 10^9 MIP cm^2$

Material	Density	Volume	Signal Yield	Comment
Diamond	3.52 g cm⁻³	10mmx10mmx500u m = 50mm2	13eV/pair 2.23 fC/MIP	lonization
Al		13mm2	0.05 e/MIP 0.0005 fC/MIP	Secondary emission
Quartz		1cm3 3.1415x(200um) ² x 28m	100 ¥ MIP ⁻¹ mm ⁻¹	Cherenkov light
N2	1.2 kg m ⁻³	1.5 l	34.8 eV/pair 3.39 fC/MIP	lonization

Califes Beam line

CALIFES today

A Photo-injector

Califes Beam parameters

Parameters	Specified	Tested	Comment
Energy	200 MeV	205 MeV	Without bunch compression
Norm. emittance	$< 20 \ \pi \ \mathrm{mm.mrad}$	$4 \pi \text{ mm.mrad}$	With reduced bunch charge
Energy spread	<±2%	± 0.5 %	
Bunch charge	0.6 nC	0.65 nC	With new photocathode
Bunch spacing	0.667 ns	0.667 ns	Laser driven
Nb of bunches	1-32-226	from 1 to 300	Limited by RF pulse length
rms. bunch length	< 0.75 ps	1.4 ps ??	Still to be checked
Repetition rate	0.8 – 5 Hz	0.8 – 5 Hz	Upgrade possibility to 10 Hz