Summary 00

Optimization of Beam Instrumentation for Light Sources

Laura Torino

May 8, 2014 3rd oPAC Topical Workshop on Beam Diagnostics Vienna, Austria

3rd oPAC Topical Workshop on Beam Diagnostics

イロト イポト イヨト イヨト

nar

Э

SYNCHROTRON LIGHT SOURCES

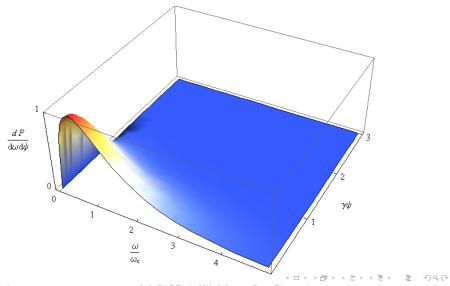
BEAM DIAGNOSTIC @ SLS

SUMMARY

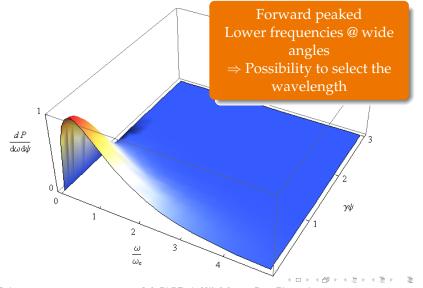
Laura Torino

3rd oPAC Topical Workshop on Beam Diagnostics

SYNCHROTRON RADIATION


The electromagnetic radiation emitted when a high energetic charged particle is accelerated radially is called *Synchrotron Radiation*

- High radiation flux
- High brilliance
- Wide radiation spectrum
- ► Tunability
- Defined polarization


I D F A B F A B

POWER DISTRIBUTION

3rd oPAC Topical Workshop on Beam Diagnostics

POWER DISTRIBUTION

3rd oPAC Topical Workshop on Beam Diagnostics

SYNCHROTRON LIGHT SOURCES

BEAM DIAGNOSTIC @ SLS

SUMMARY

Laura Torino

3rd oPAC Topical Workshop on Beam Diagnostics

3

BEAM DIAGNOSTIC USING SR

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-invasive

Disadvantages

- Need of a source
- Radiation exposure
- "Only" for light particles

イロト イポト イヨト イヨト

Machine design

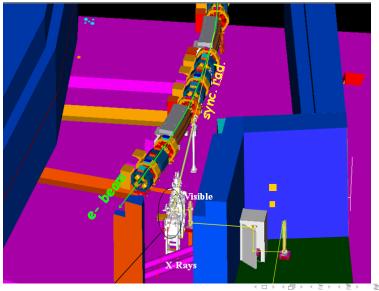
BEAM DIAGNOSTIC USING SR

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-invasive

Disadvantages

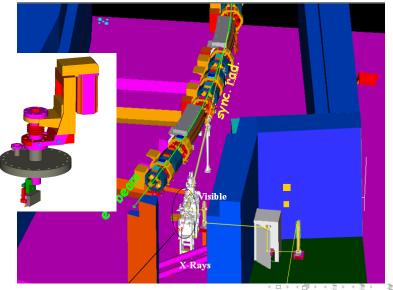
- Need of a source
- Radiation exposure
- "Only" for light particles


・ ー ホ ー 中 マ マ マ ト ・

Machine design

Visible radiation coming from a bending and extracted through a mirror chicane

SUMMARY 00


DIAGNOSTIC BEAMLINE

Laura Torino

Summary 00

DIAGNOSTIC BEAMLINE

Laura Torino

Summary 00

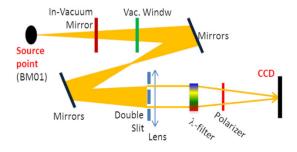
DIAGNOSTIC USING SR

Transverse beam measurements

Beam size (Visible)

Longitudinal beam measurements

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


Filling pattern

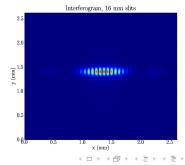
BEAM SIZE-INTERFEROMETRY

Measurement of the first order of spatial coherence of the synchrotron radiation using a double slit interferometer

$$\sigma = \frac{\lambda d_0}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}} \qquad \qquad V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

3rd oPAC Topical Workshop on Beam Diagnostics

• □ > < 同 > < 三 > <</p>

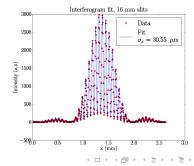

BEAM SIZE-INTERFEROMETRY

Measurement of the first order of spatial coherence of the synchrotron radiation using a double slit interferometer

$$\sigma = \frac{\lambda d_0}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}}$$

$$V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

Using good quality optical components \downarrow Beam size < 10 μ m can be achieved

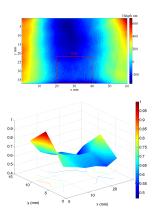

BEAM SIZE-INTERFEROMETRY

Measurement of the first order of spatial coherence of the synchrotron radiation using a double slit interferometer

$$\sigma = \frac{\lambda d_0}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}}$$

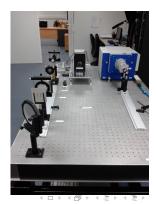
$$V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

Using good quality optical components \downarrow Beam size < 10 μ m can be achieved



SYNCHROTRON LIGHT SOURCES

BEAM DIAGNOSTIC @ SLS


Summary 00

OPTIMIZATION Optics Use of high quality optical components not to deform the waveform

Acquisition

Use of a Fast Gated Camera to perform Bunch by Bunch transverse size measurements

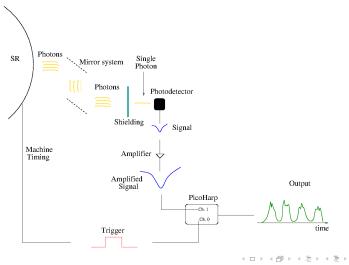
LONGITUDINAL MEASUREMENTS

The longitudinal structure of a circular accelerator is defined by the beam revolution period and the accelerating RF-frequency $h = T \times f_{RF}$ The machine is divided into *h* **Buckets**. Each bucket can be filled with a bunch

Filling Pattern

The scheme of distribution of bunches among the machine buckets

・ ー ホ ー 中 マ マ マ ト ・

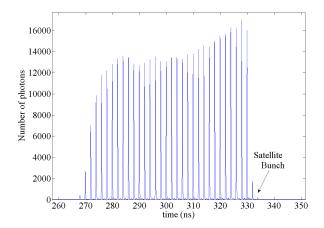

SYNCHROTRON LIGHT SOURCES

BEAM DIAGNOSTIC @ SLS

Summary 00

FILLING PATTERN-TCSPC

Time Correlated Single Photon Counting

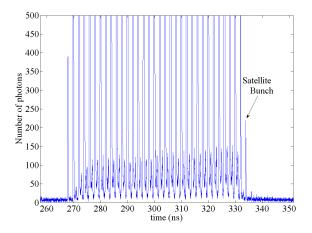


Laura Torino

3rd oPAC Topical Workshop on Beam Diagnostics

つへで 11

FILLING PATTERN-TCSPC

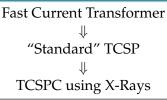


3rd oPAC Topical Workshop on Beam Diagnostics

3

イロト イボト イヨト イヨト

FILLING PATTERN-TCSPC

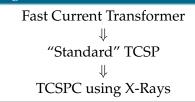


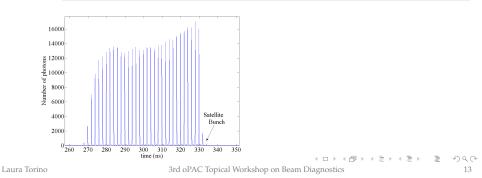
Dynamic Range better than $10^3 \Rightarrow$ Also bunch purity experiments

Laura Torino

OPTIMIZATION

Filling Pattern Measurement Evolution




3rd oPAC Topical Workshop on Beam Diagnostics

イロト イポト イヨト イヨト

OPTIMIZATION

Filling Pattern Measurement Evolution

OPTIMIZATION

Filling Pattern Measurement Evolution

TCSPC X-Rays

- More stability for Top-Up operation
- Inside the tunnel

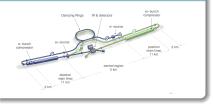
イロト イポト イヨト イヨト

3rd oPAC Topical Workshop on Beam Diagnostics

3

OPTIMIZATION

Filling Pattern Measurement Evolution


TCSPC X-Rays

- More stability for Top-Up operation
- Inside the tunnel
- ► More space...

イロト イボト イヨト イヨト

NOT ONLY SLS!

Electron Machines/Linear Collider

LHC

- ► Bunch Purity with TCSPC
- Imaging
- Interferometry

Possibility of using undulators to increase the photon flux

イロト イポト イヨト イヨト

Muon Storage Rings

Need to know the muon energy \Rightarrow Measure the μ g-2 using SR emitted by muon decay electrons

 $\omega_a = a_\mu \gamma \omega_{cic}$

- Synchrotron radiation
 - Physical characteristics
- Application in machine diagnostic
- Transverse beam size
 - Further optimizations
- Longitudinal measurements
 - Further optimizations

イロト イボト イヨト イヨト

- Synchrotron radiation
 - Physical characteristics
- Application in machine diagnostic
- Transverse beam size
 - Further optimizations
- Longitudinal measurements
 - Further optimizations

イロト イポト イヨト イヨト

This project is funded by the European Union under contract PITN-GA-2011-289485