# Design and Assembly Studies for Track Trigger Modules

Mani Tripathi
University of California, Davis

WIT 2014 Philadelphia, 5/15/14

## R&D aimed at studying assembly issues

- Architectures being considered typically involve several sensors/IC's in a complex assembly.
- Pixel detectors present in most designs, so bump bonding needed.
- Information transfer between layers from the bottom sensor to the top (or vice-versa).
- Interconnections are required between chips to define overlapping regions/sectors. Z information must cross between chips or incur dead regions.
- Material budget is always an issue.
- Efficient cooling requires that the assembly should have minimum thermal impedance.
- CTE differences need to be minimized.

## UCD Facility for Interconnect Technology



Mani Tripathi 5/15/14

#### UCD Facility for Interconnect Technology

- Equipment purchased using ARRA funds. Operations funded by DOE Generic R&D grant
- Mission is to support detector R&D projects

#### **Electronics Shop**





Britt Holbrook & Ray Gerhard

#### Machine Shop







John Thomson & Dave Hemer Christian Neher

Technician.

Mask design. Bump bonding. Wet chem.

## CMS Example: MAPSA-Light

See talk by D. Ceresa

MPA-Light with wirebond and flip chip pads, diced, unbumped, Al surface finish.

Sensor-Light: on wafer or diced, Al surface finish pads.

No TSV on first MAPSA-Light assembly.

From G. Blanchot

#### **Assembly process flow:**

- UBM metallurgy on both sensor and MPA light parts.
- Bump deposition on diced MPA-Light chip.
- Bump bonding of MPA-Light on Sensor Light.





Mani Tripathi 5/15/14

From R. Lipton

All designs are based around carbon foam spacers that provide requisite radial lever arm between sensors.

The top sensor communicates with the ROC through a PCB, which also houses analog traces and digital busses.

A flex cable is used to communicate with the bottom sensor.

In an alternative design through silicon vias (TSV) are used to connect the ROC with the top sensor.

## Initial Design Concepts





# Example: Proposed Structure



Do away with the PC board and place the RO chip directly on the flex.

- Explore PCB-based interposer design using flex circuit
- Understand requirements (via size, line width, layers) for successful layout
- Understand bump-bonding and CTE issues

### Proposed Structure: Details - I



## Proposed Structure: Details - II







## Studies Being Done

- Flex cable attachment
- Solder bump formation
- Gold stud bump bonding
- Chip stacking via interposers
- Glue dispensing
- Thermal conductivity measurements

#### Studies of Flex Cable Attachment





#### Main Issues with Flex Cable

- For large cables, CTE mismatch between kapton and silicon is an issue - Strain relief slots were cut into the cable.
- The pads needed a good solder dam for uniform height
- Alignment windows with matching targets on wafer.
- The flip-chip assembly already had been solder bonded (using Pb/Sn eutectic). Hence, the reflow had to occur at a lower temp - Used In/Ag solder - other options exist.
- The heating had to be uniform in order to avoid warping of the kapton cable.
- Mechanical strength of bond not enough Add epoxy.

# Si-W Calorimeter



# Si-W Calorimeter



# Studies of Solder Dispensing





This got the left over material

### After Reflow

• Heating plate for reflow - MP + 20C for 60 seconds.

 Corrected most of the size inconsistencies. Manual intervention possible for prototypes A From the previous slide



- Distance from syringe tip to substrate important Larger distance resulted in larger bumps
- Current size ~300 um Move to smaller tip for forming smaller bumps.

## Double gold-stud bonding

- Useful for devices with Al pads no need for UBM.
- Gold ball placed on both devices to be bonded
- Studs are flattened (coining)'
- Standard alignment with flip-chip bonder
- Bonded with thermocompression





## Process requires lower T and P

- Pressure Dependence at 320 °C: 100% yield with 70 g/ stud or more
- Temperature Dependence at 160 g/stud: 100% yield with 130 °C and above

#### Bond Yield vs. T and P (for bonds $< 2 \text{ m}\Omega$ )

#### Dual Variable Trials

- 80 g/stud
   and 160 °C
   yielded 100%
- Combinations above this successful



Mani Tripathi 5/15/14

Sensor-Interposer-ROIC Stack











## Gluing Studies

- We are putting together practice assemblies using dummy MaPSA ROIC, sensors and carbon foam.
- Will also be used in thermal tests.



- We are experimenting with dispensing the epoxy in a dot matrix.
- The initial trials are with glass wafers so that the spreading of the glue can be observed.

#### Summary

- Solder dispensing is a promising avenue for bumping.
- Double gold-studs are excellent tool for prototyping on devices with Al pads.
- Procedures for flex cable attachments are being developed.
- Dummy assemblies with epoxy attachments to carbon foam layers are ebing prepared.
- A jig for thermal conductivity measurements is being constructed.

## Extra

Mani Tripathi 5/15/14