Beam test performance of the 2S prototype module for the High Luminosity Upgrade of the CMS Strip Tracker

Davide Braga on behalf of the CMS Collaboration

STFC Rutherford Appleton Laboratory

Imperial College London

Outline

•Tracker upgrade & detector module

•The CMS Binary Chip 2 (CBC2)

•Mini-2S module design & testing

•DESY test beam

•Setup

•Results

Summary & Conclusion

Phase-II upgrade of the CMS Strip Tracker

- Baseline design: Barrel+5Endcaps
- Based on 2 module types only
- Provides at the same time:
 - *readout data* upon receipt of L1 trigger
 - trigger data @40MHz

Basic trigger module concept

- High-PT tracks (stubs) can be identified if cluster centre in top layer lies within a search window in R-Φ (rows)
- p_T cut given by: module radius (z), sensor separation and correlation window

CBC2 and stub finding logic

CMS Binary Chip (CBC)

2 versions have now been produced - both in 130nm CMOS

CBC1 (2011)

- 128 wire-bond pads, 50 mm pitch
- front end designed for short strips, up to 5 cm DC coupled, up to 1mA leakage tolerant, both sensor polarities
- binary unsparsified readout
- pipeline length 6.4 msec
- chip worked well in lab and test beam
- no triggering features

CBC2 (January, 2013)

- <u>254 channels</u>
- ~same front end, pipeline, readout approach as CBC1
- <u>bump-bond layout</u>
- includes triggering features

CBC2 architecture

254 channels: channel mask: CWD logic: correlation logic: trigger output: triggered data out: 127 from each sensor layer

block noisy channels from trigger logic

exclude wide clusters >3

for each cluster in lower layer look for cluster in upper layer window

1 bit per BX indicates correlation logic found one (or more) stubs

unsparsified binary data frame in response to L1 trigger

Davide Braga

CBC2 performance

- All core functionality meets requirements
- Correlation functionality verified with test pulses, cosmics (backup), and in test beam
- Analogue performance close to simulation and specifications

e.g. **1000e** noise for 5 cm strips (~8 pF) achievable for total channel power of **350 uW**

noise & power vs. external capacitance

CBC2 Testing Activities

CBC2 testing activities

Wire-bond CBC2

- Useful to develop wafer probe procedures
- X-rays TID testing

2xCBC2 hybrid

- Hybrid characterization and chip integration
- Bump-bonded ASICs
- Inter-chip links & logic

2xCBC2 mini-module + sensor

- Sr-90 source
- Cosmic rays
- Beam Test

Results with test pulse

→ Test pulse together with individually-programmable channel masks can be used to fully exercise the coincidence logic

Logic tests using beta source

Total Ionizing Dose test

- Initial Xray irradiation to 10 Mrads and 1wk annealing @100°C
- CBC2 operated continuously during irradiation and annealing
- monitored currents, biases, pedestal, noise
- no significant change in performance, moderate increase in current before annealing

Beam Test

Pt module beam test at DESY

- December 2013
- 4 GeV positron beam
- Datura telescope + 2 pT modules (1 fixed, 1 rotatable) with 2 different strip sensors
- Custom control and DAQ

TOP VIEW: strip direction into page

Pt modules & sensor variants

3 PT modules taken to DESY:

- 2 different sensor types
- one module left as backup

each CBC2 chip takes 127 inputs from upper sensor and 127 inputs from bottom sensor

module #	sensor	sensor type	pitch [um]	thickness [um]	length [mm]	# strips	comments	tested
3	Infineon	n-type	80	300	50	256	region of disconnected channels	yes
4	CNM	p-type	90	270	54	254		yes
1	Infineon	n-type	80	300	50	256	noisy strips, disconnected channels, odd low bias behaviour	no/ backup

Modules taken to DESY

Each module assembled into identical units for mechanical support, environment control & handling

light-tight aluminium cast ~10x20cm
 boxes for support and heatsinking

- aluminium foil windows

 Peltier elements to actively cool hybrid to 20° via external Arduino-based controller

- connectors for DAQ, power, temperature control, HV bias

Beam test DAQ

M. Pesaresi, IC L. Gross, IPHC

Davide Braga

Beam test DAQ (2)

- basic elements for the CMS based DAQ were put in place just in time for beam test

Beam test issues

- most issues solved during week's running: DAQ ran stably for last few days (albeit at ~300Hz)

- some issues that took a while to solve to do with the external TLU

Timestamp issue with the Datura Telescope:

- BX and Orbit number not saved by the GLibStreamer
- Ali Harb (DESY) looking into ways to synchronise the two data sets based on hit patterns

Commissioning steps

much time was dedicated to commissioning the modules in beam

Measurements

- 24h shifts in the last 3-4 days
- over 120M events to disk!
- threshold scans at normal incidence (high statistics, fine VCTH steps)
- low threshold scan (to see noise floor)
- latency scans
- angular scans with high statistics, nominal thresholds
- threshold vs angular scans (low statistics, coarse VCTH steps)
- runs with different cluster width discrimination settings
- dedicated runs to check DAQ and telescope synchronisation

P_T cut principle demonstrated

- P_T-cut reconstructed from beam test data matches the design one exactly
- Sharp turn-on

→ First experimental result to prove the stub selection concept!

Davide Braga

Study of cluster width

- Average width and cluster width distribution study
- Data used for comparison with CMSSW Digitizer reconstruction (Suchandra Dutta and Suvankar Roy Chowdhury, Saha Institute of Nuclear Physics)

Strip noise

Noise probabilities per CBC and per sensor

- Noise obtained by fitting a binomial to the number of hits per strip with no beam
- One case (CBC1-sens.0) not well described by single binomial \rightarrow need more data
- Noise smaller than 10⁻⁶ per strip per trigger

Davide Braga

Martin Delcourt, UC Louvain

Detection Efficiency

Hits with hit detected within window

- $\epsilon = 99.91 \pm 0.01\%$ (CBC0) 99.89 $\pm 0.01\%$ (CBC1)
- Loss of efficiency on the sides
- Loss of efficiency in the due to bad strip

det	CBC	£(%)	σ_{ϵ}
0	0	99.92	0.01
0	1	99.89	0.01
1	0	99.54	0.01
1	1	99.45	0.03
2	2	99.07	0.03
2	3	99.31	0.04
3	2	99.39	0.02
3	3	99.45	0.03

Table : Efficiency of the different sensors/CBC as defined earlier.

Module alignment

 $\phi = 2.17 \pm 0.03^{\circ}$

 $\phi = 2.1 \pm 0.6^{\circ}$

Clean Event Scan

Martin Delcourt UC Louvain

VCTH ~ 100 optimum setting for low noise and "clean" events

Proportion of events with cluster occupancy = 1 for all sensors.

Run 478 to 496

If occ=1 for all sensors, proportion on events with distance > 4 between hits on sensor 0 and sensor 1.

Run 478 to 496

Module-Test Setup at CERN

- Fully equipped Module-Test Setup available at CERN
- exactly the same DAQ chain as in the beam test (FW & SW)
- fully integrated in uTCA shelf
- infrastructure for testing, development & debugging

- mechanics for testing with cosmics / radioactive source & scintillator trigger
- used for: integration tests of components, development of commissioning & calibration procedures
- currently focusing on: CBC hit correlation studies

Georg Auzinger, Stefano Mersi, CERN

Conclusions and Future Work

Conclusions and Future Work

Two successful full-size prototypes of new Outer Tracker ASIC and mini-2S module in hand

✓ CBC2 working to specs, stub finding logic functioning

First beam test of the 2S prototype module

- ✓ successful commissioning & readout of two prototype stacked modules in beam, prompt analysis and online s/w
- ✓ data taken for measurement of sensor/front-end performance & to demonstrate ability of 2S modules to discriminate on pT
- ✓ DAQ and readout system integrated, commissioned & working in beam test

TID testing started, no problem so far

Goals for 2014:

- Continue Pt Module characterization in beam (sensor + front-end ASIC + hybrid + DAQ)
- ightarrow Applied for beam time at the end of the year at SPS
- \rightarrow First characterization of irradiated sensors (cooling required)
- ✓ 8-CBC2 hybrids for the telescope planes
- \rightarrow Validation of full DAQ chain, including future ASIC (Concentrator) emulated in FPGA

First results to prove the track-trigger concept → CMS ambitious plans for a track trigger look promising

Acknowledgements

CBC2:

RAL: Davide Braga, Lawrence Jones, Peter Murray, Mark Prydderch IMPERIAL COLLEGE: Geoff Hall, Mark Pesaresi, Mark Raymond CERN: Federico Faccio, Kostas Kloukinas, Stefano Michelis

2S module:

CERN: Georges Blanchot, Alan Honma, Mark Kovacs, Francois Vasey

commissioning & data taking

Beam test and analysis:

CERN: Georg Auzinger, Stefano Mersi
DESY: Ali Harb, Andreas Mussgiller, Doris Eckstein
HEPHY: Thomas Bergauer, Wolfgang Treberspurg
IPHC: Christian Bonnin, Kirill Skovpen, Laurent Charles, Laurent Gross
KIT: Alexander Dierlamm, Martin Printz
IMPERIAL COLLEGE: Davide Braga, Jonathan Fulcher, Mark Pesaresi, Mark Raymond
SAHA INSTITUTE OF NUCLEAR PHYSICS: Suchandra Dutta, Suvankar Roy Chowdhury
UC LOUVAIN: Christophe Delaere, Jerome De Favereau, Martin Delcourt
UNIVERSITY OF BRISTOL: David Cussans, Fionn Ball