
Geant4 V10.0 Performances:
A study of build options

A. Dotti	

12th January 2013	

Geant4/SFT Meeting - CERN

Introduction

•Some studies I’ve started after the very interesting findings from
Vladimir Ivantchenko 	

•http://indico.cern.ch/conferenceDisplay.py?confId=287282	

!

•In particular I (we) were very interested to the Static/Shared
libraries differences

!2

http://indico.cern.ch/conferenceDisplay.py?confId=287282

Testing setup

•Using “performance” machine from Openlab	

•Equipped with 2x Intel Xeon E-5650 @ 2.67

GHz	

•Westmere-EP architecture	

•6 cores (+HT)	

•http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-(12M-Cache-2_66-GHz-6_40-GTs-

Intel-QPI)	

!
•Geant4 Version 10.0 codebase

•out-of-the-box, with cmake, 64bits	

•Running ParFullCMS application

•6 threads locked on first cpu (hwloc V. 1.7.2)	

•GDML support from local Xerces-C ( 

V. 3.1.1) installation	

•50 GeV pions in random direction	

•FTFP_BERT physics list	

•B-Field on

!3

http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-(12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI

What to measure

•measure time spent in event loop (e.g. exclude init, final)	

•100 Events/thread	

•Report throughput: events/minute/thread 	

•Change RNG seed at each run	

•Repeat test several times, measure averages	

•Measurements are not gaussian: some events take longer than

average (over fluctuation of hadronic component of showers)	

•Estimate intrinsic precision is about 1% (worse w/o pinning)	

•Whenever not specified using default compilation options: -O2, tls-

model=initial-exec -fPIC, Release build type*

!4

* See backup slides

Testing Results

Click to edit Master text styles

Compiler

•GCC 4.4.7 baseline	

•Via AFS:	

•GCC 4.8.1	

•CLANG 3.3	

•ICC 14.0.1	

!

•GCC 4.8.1

• 2.6% faster than baseline

•CLANG 3.3	

•produces code substantially slower

-6%	

•Release or RelWithDebInfo are

basically the same

!6

Click to edit Master text styles

Static Vs Shared

•Confirmed Vladimir’s finding	

•Static libraries builds are

substantially faster: +20%

•Hierarchy between compilers
is preserved

!7

Click to edit Master text styles

Optimization levels

•Reminder: -O2 default options
(note: meaning is different
between compilers)	

•-O3 does not bring
improvements	

•Neither does -Ofast (GCC for
fast math)	

•Warning: may violate IEEE and

ANSI standards	

•neither does IPO	

•Exists also for GCC, not tested

!8

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

See next slide

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

A note on PGO	
 	

•Profile Guided Optimization brings another 20%

•How does it work:	

•Run once with instrumented code and produce profiles	

•Recompile code using results of previous step to push optimizations (e.g.

improve branch predictions)	

•Seems wonderful but:	

•Can produce wrong numeric results (not tested)	

•Need to know hw where process will run	

•Tried to compile with PGO on Nehalem CPU and run on Westmere, no gain

(but no loss either...)	

•Clearly is application specific. What happens changing primary?	

!

•It’s probably worth some further investigation	

•GCC also supports this, not tried

!9

Geant4 Specific Options

TLS Model 1/2

•For thread-local-storage four options exist. From most general to most optimized:	

• global-dynamic

•It allows TLS in dynamic loaded modules (e.g. dlopen)	

•Slow because it performs checks and creates TLS “blocks” at runtime (tls_get_addr function)	

• local-dynamic
•Optimized version of previous code, restrictions apply (intra-module access to TLS variables)	

•For Geant4 it produces broken code with Shared libraries	

• initial-exec
•Restrictive, optimized code. Default in Geant4	

•Avoid use of tls_get_addr assuming at program startup TLS space can be pre-prepared	

•dlopen ok only if all TLS static are uninitialized and fit in 512 bytes (!)	

• local-exec
•Most restrictive TLS code, fastest	

•All TLS variables defined in the executable	

•Geant4 does not compile with Shared libraries

!11
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-6ABFB39C-A478-4974-9A38-170AA13BC623.htm

http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-6ABFB39C-A478-4974-9A38-170AA13BC623.htm

Click to edit Master text styles

TLS Model 2/2: Results

•With static libs there are no
differences	

•Warning: compiler may have

used always local-exec
(optimization)

•For shared libraries global-
dynamic gives few percent CPU
penalty (not 20% reported two
years ago, why this difference?)	

!

•Side Note (for CMS): with dlopen can use
only global-dynamic

!12

Click to edit Master text styles

Other Flags

•The following two flags are active:
G4VERBOSE and
G4_STORE_TRAJECTORY	

•Can be switched off. Drawbacks:	

•Fewer run-time checks of simulation

correctness and less info in case of
error	

•No visualization of events	

•+5-6% CPU improvements
•Mainly from G4VERBOSE

!13

Conclusions

•With the following combinations:	

•Using static libraries (main contribution)	

•Using GCC 4.8.1	

•Turning off G4VERBOSE and G4_STORE_TRAJECTORY	

•25.7% additional throughput

!

•Considering the possible large improvement user communities
should consider the adoption of these options	

!

•Note: In addition GPO provides additional large boost, but detailed studies on the validity of
the results are needed. It may even require rethinking of how production are carried out (e.g.
hw specific builds)

!14

Click to edit Master text styles

Overview

!15

Compilers
GCC 4.4.7
GCC 4.8.1
ICC 14.0.1
CLANG 3.3
G4 options

Backup

Compilation Option: Default

•-‐DG4_STORE_TRAJECTORY	 -‐DG4VERBOSE	 	
•-‐DGEANT4_DEVELOPER_RELEASE	 -‐W	 -‐Wall	 -‐pedantic	 -‐Wno-‐
non-‐virtual-‐dtor	 -‐Wno-‐long-‐long	 -‐Wwrite-‐strings	 -‐
Wpointer-‐arith	 -‐Woverloaded-‐virtual	 -‐Wno-‐variadic-‐
macros	 -‐Wshadow	 -‐pipe	 -‐ftls-‐model=initial-‐exec	 	
•-‐pthread	 -‐std=c++98	 -‐O2	 -‐DNDEBUG	 -‐fPIC	 [...	 module	
specific	 -‐D...]	
!

•Note on -fPIC: this is mandatory for shared libraries in 64-bits. In
32-bits its use may introduce an overhead that is not present in 64-
bits. When using static libraries we do not use -fPIC

!17

