Hadronic problems for Geant4 10.0

V.Ivanchenko
13 January 2014

Motivation

- There was a sudden problem in CMS Monte Carlo production during winter break
- The problem was understood and the fix was provided
- This needs to be discussed within the group
- Some actions are proposed

Bug in CMS Production

- Specific CMS simulation jobs crash over Christmass production
 - ADDMonoJet 8 TeV (1 case)
 - QCD_Pt15to3000_Tune4C_Flat_13TeV_pythia8
 - 77% events produced 10 M requested
 - GJet_Pt-15to3000_Tune4C_13TeV_pythia8
 - 80% events produced 10 M requested

Description of 1 event which crashes

- K- with E= 108.1 MeV interact inside calorimeter
- The list of secondaries:

462.94611066257 -1216.9784501607 1765.7986925122 40.45223880619 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 13.77457224717 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 10.415974425165 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 4.947160460271 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 4.1779372348452 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 4.0393838801232 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 2.9006638881963 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 2.8048326605548 7.3653879760619 462,94611066257 -1216,9784501607 1765,7986925122 2,5319219985922 7,3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 2.3302907463081 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 1.8616579021685 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 1.7845537007782 7.3653879760619 62.94611066257 -1216.9784501607 1765.7986925122 1.5630561389648 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 1.26074160224 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 1.2480532990276 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 1.0351838176639 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 0.83203415190699 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 0.66796127556836 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 0.55035528834333 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 0.1123047088407 7.3653879760619 462.94611066257 -1216.9784501607 1765.7986925122 0.36696848631254 7.3653879760619

pi+ proton neutron neutron neutron neutron sigmagamma neutron gamma neutron neutron4 neutron neutron gamma neutron gamma neutron neutron gamma Hg192[0.0]

Crash follows this interaction

Begin processing the 105th record. Run 1, Event 5147305, LumiSection 51474 at 30-Dec-2013 21:41:18.746 CET

G4VParticleChange::CheckSecondary: the global time of secondary goes back comapared to the parent!! Difference: 0.99775225901356[ns]

pi- E=98.67839939458 pos=0.46293420981106, -1.2170107912801, 1.7657666988138 time=6.3676357170484 parent time=7.3653879760619

*** G4Exception: TRACK001 issued by G4VParticleChange::CheckSecondary Secondary with illegal energy/momentum *** Event must be aborted

Crash happens with Sigma-

- 3 MeV Sigma- tracking fails:
 - Decay on-fly was selected as a process limited the step
 - Due to fluctuations of ionisation loss AlongStep all kinetic energy was lost
 - Decay on-fly with zero kinetic energy provides wrong position and time of secondary products
- Hisaya provided a patch of G4Decay class for 10.0
 - Patch was prepared for CMSSW based on 9.6p02 and implementing the Hisaya patch
 - This patch of Geant4 now is integrated into CMSSW
 - Validation of the patch will require some time

Open Questions

- Why bug start to be seen in Geant4 9.6p02?
- Why it is seen only in some circumstances?
 - When we tried to reproduce the bug in different primary generators we fail to see it
 - The bug was identified and fix when we have reproduced the particular run which failed

Annoying printouts

When we was hunting CMS production problem CMS users point me out to well known warning:

G4Fragment::CalculateExcitationEnergy(): WARNING Fragment: A = 26, Z = 12, U = -5.947e-01 MeV IsStable= 1 P = (1.038e+02,3.127e+00,1.449e+02) MeV E = 2.420e+04 MeV

- I would propose to try to fix and remove this warning because
 - Users are confused
 - Some hadronic models prepared 4-momentum in nonaccurate way but G4Fragment constructor has to fix this
 - Why not to fix models?
- For this I would propose to substitute this warning by fatal G4Exception just now and try to fix all places

Memory churn in de-excitation module

- Today the leader in memory churn in hadronics is deexcitation module
- G4Fragment is created and delete too frequently
 - Number of new G4Fragments created by photon evaporation may reach 30
 - Number of evaporated G4Fragments may reach 100 in high energy cascade
- Manipulation of G4Fragment inside de-excitation module is too complex, so the only straightforward method to improve memory management is to use G4Allocator
 - This can be done now and be included into the 1st patch of 10.0
- As a long-term goal for 2014 we may have redesign of deexcitation, so G4Allocator will not be needed at all

13 January 2014