DSCG liquid crystal's viscosity: Insight into the motility of bacteria in an anisotropic liquid environment

In this talk

- Anisotropic medium: DSCG liquid crystal
- Isotropic and anisotropic motility of flagellar bacteria (E. coli)
- Speed and orientation of bacteria in DSCG solution
- Viscosity of DSCG solution

Ismaël Duchesne, Simon Rainville and Tigran Galstian

DSCG liquid crystal's viscosity: Insight into the motility of bacteria in an anisotropic liquid environment

Anisotropic liquid environment:

➤ Physical properties depend on the direction (as birefringence)

Flagellar bacteria:

➤ Bacteria that may swims in aqueous medium by rotating theirs flagella

Why anisotropic motility:

- ➤ Many biological tissues and media may be anisotropic (biofilms, enriched chitin soils...)
- ➤ Difficult task: only few studies

Anisotropic medium: nematic liquid crystal (LC)

Lyotropic LC: cromolyn sodium salt (DSCG)

Yu. A. Nastishin and al., Physical Review E, November 2004.

Isotropic motility of *bacteria*: runs and tumbles

Anisotropic motility of flagellar bacteria (*E. coli*)

Experiments: montages

Chamber and light-guided dark-field microscopy

Results: bacterial motility

- Purely isotropic phase: as if there were no DSCG
- Pretransitional phase: sticky effect
- Anisotropic phase: decrease of speed and runs in the direction of the director

Results: viscosity measurements (from diffusion of 0,2-2µm microspheres)

- Purely isotropic phase: little viscosity increase
- Pretransitional phase: exponential viscosity increase
- Anisotropic phase: anisotropic viscosity

Can we explain the anisotropic motility with the anisotropic viscosity?

Conclusion

- Bacteria behave very differently in anisotropic media
- Viscosity doesn't explain everything (active motility important)
- "New" pretransitional phase
 - Viscosity increase (aggregation threshold)
 - Sticky effect
- New possibilities for controlling motion of microorganisms

Acknowledgements

Fonds de recherche sur la nature et les technologies

Ouébec

- Dr Simon Rainville
- phD students
 - Guillaume Paradis
 - Ismael Duchesne
- Dr Tigran Galstian
- phD students
 - Karen Allahverdyan

Viscosity dependency to the beads size

Propulsive force of bacteria

