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Hawking Radiation

● Black holes emit thermal radiation
● Black holes have a “temperature”
● Hartle-Hawking vacuum contains particles
● How can we measure the temperature of a 

black hole?



  

Measuring Temperature

● Idea: put a two-level system above a black hole
● Model Hawking radiation as a scalar
● Excitation = Detection
● Transition rate should obey thermality condition



  

Which Black Hole?

● Schwarzschild



  

Which Black Hole?

● Schwarzschild

● Done by Hodgkinson, Louko, Ottewill (Phys. 
Rev. D 89, 104002 (2014))



  

Schwarzschild Anti-de Sitter Space

Timelike infinity



  

Schwarzschild Anti-de Sitter Space

● Schwarzschild (uncharged spinless) black hole
● Asymptotically AdS
● Timelike infinity
● Reflective boundary conditions



  

Why SAdS?

● Well-studied system
● Physical importance: AdS/CFT duality
● Conformal coupling similar to Schwarzschild 

case
● Detector response not done before



  

The Unruh-Dewitt Detector

● A monopole detector with small coupling 
constant c, switching function χ(τ)

● Simplest detector has two energy states with 
gap E

● First-order transition probability over trajectory:



  

The Response Function F(E)

● F(E) is independent of physical details of the 
detector besides energy gap

● For calculations, can be written in terms of the 
Wightman function



  

Special Case: Stationary Trajectory

● In this case, we can integrate over infinite time 
and take the average, and the regulator can just 
be taken to zero pointwise.

● Since Wε(u,u-s)=Wε(s) depends only on s, we 
end up with

● Works for static detectors and circular geodesics



  

Which Vacuum?

● Hartle-Hawking vacuum: black hole in thermal 
equilibrium with environment, radiation present

● Boulware vacuum: static observers see no 
particles, no radiation present



  

Conformal Radial Klein-Gordon 
Equation



  

Effective Potential



  

Static Transition Rate

● Dependence on one energy for each angular 
momentum



  

Hartle-Hawking vs. Boulware



  

HH Angular Momentum 
Decomposition



  

Features of Static Transition Rate

● Angular momentum contributions go to zero at 
certain points: mode at detector is zero

● Peaks: Quasinormal modes (“trapped modes”)
● Higher angular momentum contributions are 

nontrivial at higher detector energies
● Peaks get sharper with higher angular 

momentum, due to reflective boundary



  

Effective Potential



  

Circular Geodesic Detector

● Solving equations of motion for circular orbit 
yields



  

Hartle-Hawking vs. Boulware



  

Boulware Angular Momentum 
Decomposition



  

“Steps”

● Contribution nonzero for positive
● Dropoff is dependent on
● Circular geodesic motion creates excitation 

regardless of field state



  

Hartle-Hawking Angular Momentum 
Decomposition



  

HH Angular Momentum 
Decomposition



  

HH Angular Momentum 
Decomposition



  

Small Black Hole Limit

● When the black hole is very small compared to 
the AdS length, the spacetime is “almost AdS”

● Higher angular momentum modes contribute 
less off-peak at energies shown

● Peaks become sharper, and approach AdS 
normal frequencies



  

First Peak Frequency



  

HH Angular Momentum 
Decomposition



  

Large(r) Black Hole Limit

● No transition between small and large black 
holes, since effective potential vanishes at 
infinity

● Peaks subsumed by greater exponential decay; 
not very interesting

● Boundary conditions mean this is not 
Schwarzschild-like



  

Conclusions

● Radiation is thermal, but not featureless
– Peaks due to quasinormal resonances

– Troughs due to zeroes of modes

● Small black holes converge to AdS sharp peaks
● Large black holes have no peaks
● Circular geodesic detectors are excited in either 

vacuum 



  

Next Steps

● More general trajectories, e.g. radial infall
● More general spacetimes, e.g. SAdS geon
● Multiple detector scenarios



  

Next Steps

● More general trajectories, e.g. radial infall
● More general spacetimes, e.g. SAdS geon
● Multiple detector scenarios
● Firewalls?
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Thank You!
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