Search for Supersymmetry in the three lepton + ETmiss final state

Matthew Gignac CAP Conference June 16th – June 20th 2014

Supersymmetry (SUSY) is an extension of the Standard Model (SM) of particle physics

→ All SM particles get a "super-partner" which differs by 1/2 unit of spin

ParticleNameSpinSparticleNameSpin q quarks $1/2$ \tilde{q} squarks0 l leptons $1/2$ Q, Q^{\dagger} \tilde{l} sleptons0 W^{\pm}, W^0 W-bosons 1 \iff $\tilde{W}^{\pm}, \tilde{W}^0$ winos $1/2$ B B-boson 1 \tilde{B} bino $1/2$ \mathcal{F} G gluons 1 \tilde{G} gluinos $1/2$ \mathcal{F}		SM particles	5		S	USY particles		
$ \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	Particle	Name	\mathbf{Spin}		Sparticle	Name	Spin	
$H_{1,2}$ Higgses 0 $\tilde{H}_{1,2}$ Higgsinos $1/2$	$egin{array}{c} q \ l \ W^{\pm}, W^0 \ B \ G \ H_{1,2} \end{array}$	quarks leptons W-bosons B-boson gluons Higgses	1/2 1/2 1 1 1 0	$egin{array}{c} Q,Q^\dagger \ \Longleftrightarrow \end{array}$	$egin{array}{c} ilde{q} & & \ ilde{l} & & \ ilde{l} & & \ ilde{W}^{\pm}, \ ilde{W}^{0} & & \ ilde{B} & & \ ilde{G} & & \ ilde{H}_{1,2} & & \ ilde{H}_{1,2} & & \ \end{array}$	squarks sleptons winos bino gluinos Higgsinos	$\begin{array}{c} 0 \\ 0 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array}$	} "Gauginos"

Gauginos and higgsinos mix to form physical mass eigenstates:

- Two charged states called charginos: $\tilde{\chi}_i^{\pm}$ i=1,2 •
- Four neutral states called neutralinos: $\tilde{\chi}_{i}^{0}$ j=1,2,3,4
- SUSY particles: $P_{R} = -1$ → R-parity (P_p) conserving models – SM particles: $P_{p} = +1$
 - SUSY particles are pair produced •
 - Lightest Supersymmetric particle (LSP) is absolutely stable

Why search for Supersymmetry?

Standard model cannot explain the presence of a "dark matter" in the Universe

SUSY can provide a dark matter candidate!

Hierarchy problem of the Standard Model

- Higgs boson receives massive quantum corrections to its mass
- SUSY provides cancellations to these large corrections

TODAY

Standard model put to rigorous tests in the absence of a signal

- SUSY searches typically probe the tails of distributions where the most rare Standard model events occur
- "Yesterday discovery is today's background"

Why search for Supersymmetry?

Standard model cannot explain the presence of a "dark matter" in the Universe

SUSY can provide a dark matter candidate!

Hierarchy problem of the Standard Model

- Higgs boson receives massive quantum corrections to its mass
- SUSY provides cancellations to these large corrections

Standard model put to rigorous tests in the absence of a signal

- SUSY searches typically probe the tails of distributions where the most rare Standard model events occur
- "Yesterday discovery is today's background"

ATLAS Detector

ATLAS is a general purpose physics detector at the LHC

- Electrons and muons reconstructed using information from tracking, calorimeter, and muon systems
- Hadronically decaying taus identified using multi-variate techniques
- b-hadrons give displaced tracks and identified using neutral network algorithms
- Particles which don't interact with the detector contribute to missing transverse momentum

$$E_T^{miss} = -\sum_i^{N_{obj}} \vec{p}_T^i$$

Electroweak (EWK) production of charginos and neutralinos attractive signature

- → Naturalness requires light higgsinos ⇒ could be accessible at the LHC
- EWK production is dominant if squarks and gluinos are heavy
- → Large lepton multiplicity \Rightarrow clean final state at the LHC
- → Full 2012 data set used, corresponding to 20.3 fb⁻¹ \Rightarrow sensitive to rare processes

Electroweak SUSY sector

Direct production of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ has the largest production cross section

- Decay can proceed through sleptons and/or bosons
- W,Z and h assumed to have Standard Model branching ratios

1) Identify regions of the phase space which are statistically sensitive to the observation of SUSY

- → These regions are called 'signal regions'
- They remain blind for the duration of the analysis
- 2) Estimate and validate Standard Model backgrounds
 - Monte Carlo simulations and/or data driven techniques are typically used
- 3) Unblind signal regions
 - ➔ In the absence of an excess, set limits in particular SUSY models

Signal region selection

Signal regions are classified depending on the tau multiplicity

- Electron and muon only signal regions binned in:
 - Missing energy

JHEP 04 (2014)169

- Invariant mass of di-leptons
- Transverse mass of the lepton and missing energy

Total of 24 almost statistically independent signal regions

Events / 25 GeV ATLAS L dt = 20.3 fb⁻¹ √s= 8 TeV 10² SR1_T 10 Wh-mediated (140,10) 10⁻¹ Data/SM 20 60 80 100 40 120 'n 140 E^{miss}_T [GeV]

9

Validation regions

Validation regions used to verify background modelling and variable shapes

- Kinematically close to the signal regions
- Target dominant backgrounds
- Small signal contamination

Unblinded signal regions

Good agreement seen in all validation regions, proceed to unblind signal regions
 Observations are consistent with Standard Model expectations

Sample	$\mathrm{SR0} au\mathrm{b}$	$\mathrm{SR1} au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$	SE → Data ■tt V + tZ SR0τa ATLAS
WZ	0.68 ± 0.20	4.6 ± 0.6	$1.51\substack{+0.35 \\ -0.33}$	$2.09\substack{+0.30 \\ -0.31}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ZZ	0.028 ± 0.009	0.36 ± 0.08	$0.049\substack{+0.016\\-0.014}$	0.135 ± 0.025	
$t\bar{t}V + tZ$	$0.17\substack{+0.32 \\ -0.17}$	$0.16\substack{+0.18 \\ -0.16}$	$0.21\substack{+0.27\\-0.21}$	$0.023\substack{+0.015\\-0.018}$	
VVV	1.0 ± 1.0	0.5 ± 0.5	0.09 ± 0.09	0.031 ± 0.033	
Higgs	0.49 ± 0.17	0.28 ± 0.12	0.021 ± 0.010	0.08 ± 0.04	
Reducible	1.5 ± 0.4	4.3 ± 0.8	5.1 ± 0.7	4.9 ± 0.7	
Total SM	3.8 ± 1.2	10.3 ± 1.2	6.9 ± 0.8	$7.2^{+0.7}_{-0.8}$	
Data	3	13	6	5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					SR0ta bin

Interpretation in SUSY simplified modelsLimits set at 95% CL for chargino and neutralino productionDecay via sleptonsp $\tilde{\chi}_{1}^{\dagger}$ $\tilde{\chi}_{1}^{\dagger}$ $\tilde{\chi}_{1}^{\prime}$ </td

 $\tilde{\chi}_1^0$ \boldsymbol{p} τ/ν_{τ} 350 Ger (Ger) الماري (Ger) الماري (Ger) τ/ν_{τ} Observed limit (±1 of theory ATLAS L dt = 20.3 fb⁻¹, /s=8 TeV Expected limit ($\pm 1 \sigma_{exp}$) ν τ̃_ι τ (ν̃ν), τ ν̃τ̃_ι τ (ν̃ν) All limits at 95% CL $\tilde{\chi}^{0}$ $\tau \tau (v v) \tilde{\chi}^{0}$ 250 m ₂ = (m ₀ + m॑ ₀)/2 $m_{--} = m_{-}$ 200 150 100 50 0 300 350 400 450 500 100 150 200 250 m_{x̃,, x̃}[GeV]

JHEP 04 (2014)169

Interpretation in SUSY simplified models

JHEP 04 (2014)169

Conclusions

- Presented the results for a SUSY search in the three lepton final state
 - Based on 20.3 fb⁻¹ of data collected by the ATLAS detector in 2012
 - Target the direct production of $ilde{\chi}_1^\pm$ and $ilde{\chi}_2^0$ in R-parity conserving models
 - Explored intermediate decays through sleptons, staus, WZ and Wh
- Observations were consistent with Standard model expectations
- Limits were set in the context of simplified SUSY models
- ATLAS will begin data taking in 2015
 - Centre of mass energy increased to ~14 TeV
 - Stay tuned!

Additional Slides

Monte Carlo Generator

	a	<i>a</i>	~	
Process	Generator	Cross-section	Tune	PDF set
	+ fragmentation/hadronisation			
Dibosons				
WW, WZ, ZZ	Powheg-r2129 [34, 35]	NLO QCD	AU2 [36]	CT10 [37]
	+ Pythia-8.165 [38]	with MCFM-6.2 [39, 40]		
*WZ, ZZ	aMC@NLO-2.0.0.beta3 [41]	NLO QCD	AU2	CT10
	+ Herwig-6.520 [42]	with MCFM-6.2		
	(or + Pythia-6.426)			
ZZ via gluon fusion	gg2VV [43]	NLO	AUET2B [44]	CT10
(not incl. in Powheg)	+ Herwig-6.520			
$W\gamma,~Z\gamma$	Sherpa-1.4.1 [45]	NLO	(internal)	CT10
Tribosons				
WWW, ZWW	MadGraph-5.0 [46] + Pythia-6.426	NLO [47]	AUET2B	CTEQ6L1 [48]
Higgs				
via gluon fusion	POWHEG-r2092 + PYTHIA-8.165	NNLL QCD, NLO EW [49]	AU2	CT10
via vector-boson-fusion	POWHEG-r2092 + PYTHIA-8.165	NNLO QCD, NLO EW [49]	AU2	CT10
associated W/Z production	Pythia-8.165	NNLO QCD, NLO EW [49]	AU2	CTEQ6L1
associated <i>tt</i> -production	Pythia-8.165	7THIA-8.165 NNLO QCD [49]		CTEQ6L1
Top+Boson				
$t\bar{t}W, t\bar{t}Z$	Alpgen-2.14 [50] + Herwig-6.520	NLO [51, 52]	AUET2B	CTEQ6L1
* $t\bar{t}W$, $t\bar{t}Z$	MadGraph-5.0 + Pythia-6.426	NLO	AUET2B	CTEQ6L1
$t\overline{t}WW$	MadGraph-5.0 + Pythia-6.426	NLO [52]	AUET2B	CTEQ6L1
tZ	MadGraph-5.0 + Pythia-6.426	NLO [53]	AUET2B	CTEQ6L1
$tar{t}$	Powheg-r2129 + Pythia-6.426	NNLO+NNLL [54-59]	Perugia2011C	CT10
Single top				
t-channel	AcerMC-38 [60] + Pythia-6.426	NNLO+NNLL [61]	AUET2B	CTEQ6L1
s-channel, Wt	MC@NLO-4.06 [62, 63] + Herwig-6.520	NNLO+NNLL [64, 65]	AUET2B	CT10
W+ jets, $Z+$ jets	Alpgen-2.14 + Pythia-6.426	DYNNLO-1.1 [66]	Perugia2011C	CTEQ6L1
	(or + HERWIG-6.520)	with MSTW2008 NNLO [67]		•

_

Electroweak SUSY sector

Simplified supersymmetric models used for optimization and interpretation

- Masses and decay modes of the relevant particles are the only free parameters
- → Wino like $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ and mass degenerate, bino like $\tilde{\chi}_1^0$

Results also interpreted in the context of the phenomenological MSSM

<u>Slepton mediated</u>	<u>Stau mediated</u>	WZ mediated	<u>Wh mediated</u>
$BR(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \to \tilde{\ell}_L) = 50\%$ $BR(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \to \tilde{\nu}_\ell) = 50\%$	$BR(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \to \tilde{\tau}) = 50\%$ $BR(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \to \tilde{\nu}_{\tau}) = 50\%$	$BR(\tilde{\chi}_1^{\pm} \to W + \tilde{\chi}_1^0) = 100\%$ $BR(\tilde{\chi}_2^0 \to Z + \tilde{\chi}_1^0) = 100\%$	$BR(\tilde{\chi}_1^{\pm} \to W + \tilde{\chi}_1^0) = 100\%$ $BR(\tilde{\chi}_2^0 \to h + \tilde{\chi}_1^0) = 100\%$
$m_{\tilde{\ell}_L,\tilde{\nu}_\ell} = \frac{m_{\tilde{\chi}^0_2} + m_{\tilde{\chi}^0_1}}{2}$	$m_{ ilde{ au}, ilde{ u}_ au}=rac{m_{ ilde{\chi}_2^0}+m_{ ilde{\chi}_1^0}}{2}$	W and Z and have SM masses and BRs	W and h and have SM masses and BRs
$p \qquad \tilde{\chi}_{1}^{\pm} \qquad \tilde{\ell}/\tilde{\nu} \qquad \tilde{\chi}_{1}^{0} \\ p \qquad \tilde{\chi}_{2}^{0} \qquad \tilde{\ell}/\tilde{\nu} \qquad \tilde{\chi}_{1}^{0} \\ \tilde{\ell}/\tilde{\nu} \qquad \tilde{\chi}_{1}^{0} \\ \ell/\nu \\ \ell/\nu \\ \ell/\nu \end{cases}$	p $\tilde{\chi}_{1}^{\pm}$ $\tilde{\tau}/\tilde{\nu}_{\tau}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{2}^{0}$ $\tilde{\tau}/\nu_{\tau}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ τ/ν_{τ} $\tilde{\chi}_{1}^{0}$ τ/ν_{τ}	$p \qquad \qquad$	$p \qquad \qquad$

 $m_H = 125 \,\, {
m GeV}^{17}$

JHEP 04 (2014)169

Signal region selection

Select events with exactly three leptons (electrons, muons or hadronically decaying taus)

- Dominant backgrounds: WZ, ttbar, W and Z +jets
- Backgrounds are suppressed with cuts on various kinematic variables
- SROτa: 20 statistically independent signal regions with cuts on mSFOS, mT and Etmiss
- → All signal regions statistically independent with the exception of SR2 τ a and SR2 τ b

Signal region	${ m SR0} au{ m a}$	$\mathrm{SR0} au\mathrm{b}$	${ m SR1} au$	${ m SR}2 au{ m a}$	$\mathrm{SR}2 au\mathrm{b}$
${ m Flavour/sign}\ b-{ m tagged jet}\ E_{ m T}^{ m miss}$	$\ell^+\ell^-\ell,\ell^+\ell^-\ell'$ veto binned	$\ell^{\pm}\ell^{\pm}\ell^{\prime\mp}$ veto > 50	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell^{\prime\mp}$ veto > 50	$ au au \ell$ veto > 50	$\tau^+ \tau^- \ell$ veto > 60
Other	$m_{ m SFOS}$ binned $m_{ m T}$ binned	$\begin{array}{c} p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20 \\ \Delta \phi_{\ell\ell'}^{\min} \leq 1.0 \end{array}$	$p_{ m T}^{2^{ m nd}\ell} > 30$ $\sum p_{ m T}^{\ell} > 70$ $m_{\ell au} < 120$ $m_{ee} \ Z \ { m veto}$	$m_{\mathrm{T2}}^{\mathrm{max}} > 100$	$\sum_{T} p_{T}^{\tau} > 110 70 < m_{\tau\tau} < 120$
Target model	$\tilde{\ell}, WZ$ -mediated	Wh-mediated	Wh-mediated	$ ilde{ au}_L$ -mediated	Wh-mediated

$$m_T = \sqrt{2p_T^{\ell} E_T^{miss} (1 - \cos(\Delta \phi(\ell, E_T^{miss})))}$$

JHEP 04 (2014)169

Validation regions

Oτ VRs

1τ VRs

 $2\tau VRs$

Validation regions (VR) used to verify background modelling and variable shapes

- Defined to be close kinematically close to the signal regions with small expected signal contamination
- Target dominant backgrounds: ttbar, WZ, W+jets and Z+jets
- $E_{\mathrm{T}}^{\mathrm{miss}}$ N(b-tagged jets) Region name $N(\ell)$ $N(\tau)$ Flavour/sign Z boson Target process $\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ WZ^*, Z^*Z^*, Z^*+ jets $VR0\tau noZa$ 0 3 $m_{\rm SFOS} \& m_{3\ell}$ veto 35 - 50 $\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ $VR0\tau Za$ 3 0 WZ, Z+jets request 35 - 50 $\ell^+\ell^-\ell, \, \ell^+\ell^-\ell'$ 0 $t\bar{t}$ $VR0\tau noZb$ 3 $m_{\rm SFOS} \& m_{3\ell}$ veto > 50 1 $VR0\tau Zb$ 3 0 $\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ 1 WZ> 50request $\ell^+\ell^-\ell, \, \ell^+\ell^-\ell'$ $VR0\tau b$ 3 0 binned 1 $WZ, t\bar{t}$ binned $\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ 2 1 $VR1\tau a$ WZ, Z+jets 35 - 50

_

➔ Good agreement observed in all regions

 $\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$

 $\tau \tau \ell$

 $\tau \tau \ell$

1

_

1

> 50

35 - 50

> 50

 $t\bar{t}$

W+jets, Z+jets

 $t\bar{t}$

JHEP 04 (2014)169

 $VR1\tau b$

 $VR2\tau a$

 $VR2\tau b$

 $\mathbf{2}$

1

1

1

2

2

Phenomenological MSSM

Results interpreted in the context of the pMSSM

- Sleptons, heavy higgs, squarks and gluinos are "decoupled"
- → M1 fixed to 50 GeV to get the correct dark matter relic density Z funnel
- Includes all chargino and neutralino production modes (higher mass eigenstates)
- Decays through WZ drive the limit in the bulk

Parameters of the model

- → M1: mass parameter of bino field
- → M2: mass parameter of the wino fields
- → μ : mass parameter of the higgsino fields

$$\Rightarrow \tan \beta \equiv \langle \mathsf{H}_2 \rangle / \langle \mathsf{H}_1 \rangle$$

Parameters above determine the properties of the neutralinos and charginos

- Production cross section
- Branching fractions
- Masses

Background modelling

Standard model backgrounds classified into two categories:

- Irreducible backgrounds: 3 real, prompt leptons
 - Diboson production: WZ and ZZ
 - Triboson production: VVV
 - Top + vector boson: ttV and tZ
 - Higgs production
- → **<u>Reducible backgrounds</u>**: One or two 'fake' leptons
 - Top quark: single and pair production
 - Diboson production: WW
 - Single boson production: W or Z

Estimated using Monte Carlo predictions

Estimated using a data drive technique

Data driven estimate: Matrix Method

- Matrix method
 - Relates tight (T) and loose (L) leptons to real (R) and fake (F) objects
 - Leading lepton real ~99% of the time, reduces matrix to 4x4

$$\begin{pmatrix} N_{TT} \\ N_{TL'} \\ N_{L'T} \\ N_{L'L'} \end{pmatrix} = \begin{pmatrix} \epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\ \epsilon_1 (1 - \epsilon_2) & \epsilon_1 (1 - f_2) & f_1 (1 - \epsilon_2) & f_1 (1 - f_2) \\ (1 - \epsilon_1) \epsilon_2 & (1 - \epsilon_1) f_2 & (1 - f_1) \epsilon_2 & (1 - f_1) f_2 \\ (1 - \epsilon_1) (1 - \epsilon_2) & (1 - \epsilon_1) (1 - f_2) & (1 - f_1) (1 - \epsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

- Coefficients are real lepton efficiency (ϵ) and fake rate (f)
- Invert matrix and solve for number of fake leptons passing tight requirements

 $N_{Fake \to TT} = \epsilon_1 f_2 \times N_{RF} + f_1 \epsilon_2 \times N_{FR} + f_1 f_2 \times N_{FF}$

Semi-data driven (see next slide)

Matrix Method: Fake rates

- Fake rates depend on
 - Fake type (HF, LF, Conversions)
 - Process it originates from (ttbar, V+jets, etc)
- Determine a weighted average fake rate to be used in region XR

$$f_{XR}^{\ell} = \sum_{i,j} (SF^i \times R_{XR}^{i,j} \times Fij) \quad \implies \quad \substack{i = \text{fake type} \\ j = \text{process}}$$

- Fij \Rightarrow fake efficiency for fake type i from process j in region XR
- Rij \Rightarrow fraction of fake type i and process j in region XR
- ⁻ SFⁱ \Rightarrow scale factor for fake type i
- Scale factors measured in dedicated CR's
 - Assumed to be region independent

Object selection

Electrons

- <u>Baseline</u>
 - IsEMmedium++
 - pT> 10 GeV & |η| < 2.47
 - Author 1 or 3
 - Good OQ
 - Overlap removal
- <u>Signal</u>
 - IsEMtight++
 - Isolation cuts
 - D0 significance and z0 cuts

Muons

- <u>Baseline</u>
 - STACO loose
 - pT> 10 GeV & |η| < 2.40
 - ID hit requirements
 - Overlap removal
- <u>Signal</u>
 - Isolation cuts
 - D0 significance and z0 cuts

MET

• Egamma10noTau_Default

Taus

- <u>Baseline</u>
 - pT>20 GeV & |η| < 2.50
 - nTrack == 1 || 3
 - |charge| == 1
- <u>Signal</u>
 - EleBDTLoose==0
 - MuonVeto==0
 - JetBDTSigMedium==1

Overlap removal

- Discard lowest ET ele if △R(ele,ele)<0.05
- Discard jet if ∆R(jet,ele)<0.2
- Discard tau if ∆R(tau,ele)<0.2
- Discard tau if △R(tau,mu)<0.2
- Discard ele if ∆R(jet,ele)<0.4
- Discard mu if ∆R(jet,mu)<0.4
- Discard ele & mu if ∆R(mu,ele)<0.01
- Discard both muons if ∆R(mu,mu)<0.05
- Discard both leptons if ∆m(SFOS)<12 GeV
- Discard jet if ∆R(jet,signal tau) < 0.2

Triggers

 Lowest unprescaled single isolated and double lepton triggers

Trigger selection

Single and di-lepton triggers used

- Lepton is required to have fired the trigger and meet pT requirements
- Logical OR taken for all trigger bits

Trigger	$p_{\rm T}$ threshold [GeV]		
Single Isolated e Single Isolated μ	$\begin{array}{c} 25\\ 25\end{array}$		
Double <i>e</i>	$14,\!14$ 25,10		
Double μ	14,14 18,10		
Combined $e\mu$	$14(e),10(\mu) \ 18(\mu),10(e)$		

Systematic uncertainties for signal regions

	$\mathrm{SR0} au\mathrm{a}$	$\mathrm{SR0} au\mathrm{b}$	$\mathrm{SR}1\tau$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
Cross-section	4 - 25%	37%	9%	3.1%	3.0%
Generator	3.2–35%	11%	3.1%	6%	< 1%
Statistics on irreducible background	0.8 - 26%	8%	5%	5%	3.1%
Statistics on reducible background	0.4 - 29%	14%	8%	13%	12%
Electron misidentification probability	0.3 - 10%	1.3%	< 1%	_	_
Muon misidentification probability	0.1 - 24%	2.2%	< 1%	_	_
τ misidentification probability	_	_	8%	4%	5%

Binning of SROTa

Binned in mSFOS, mT and mET

$\mathrm{SR0} au\mathrm{a}$ bin	$m_{ m SFOS}$	$m_{ m T}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$3\ell~Z$ veto
1	12-40	0-80	50-90	no
2	12 - 40	0-80	> 90	no
3	12 - 40	> 80	50 - 75	no
4	12 - 40	> 80	>75	no
5	40–60	0-80	50-75	yes
6	40-60	0-80	> 75	no
7	40-60	> 80	50 - 135	no
8	40–60	> 80	> 135	no
9	60-81.2	0-80	50-75	yes
10	60 - 81.2	> 80	50 - 75	no
11	60 - 81.2	0–110	> 75	no
12	60 - 81.2	>110	> 75	no
13	81.2-101.2	0–110	50-90	yes
14	81.2-101.2	0–110	> 90	no
15	81.2 - 101.2	>110	50 - 135	no
16	81.2 - 101.2	>110	> 135	no
17	>101.2	0–180	50-210	no
18	> 101.2	> 180	50 - 210	no
19	>101.2	0 - 120	> 210	no
20	> 101.2	> 120	> 210	no