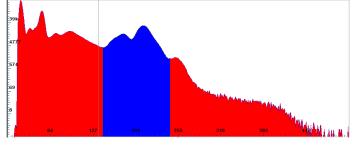
Coincidence-Compensation for an MCNP Simulation of a Co-60 Volume Source and Detector

> L. Li, K. Klein, Q. Alexander Presented by B. M. van der Ende

June 17, 2014

Outline

- Introduction to the application
- MCNP used for indirect calibration
- Coincidence compensation
- Extending to volume source
- Result and conclusions

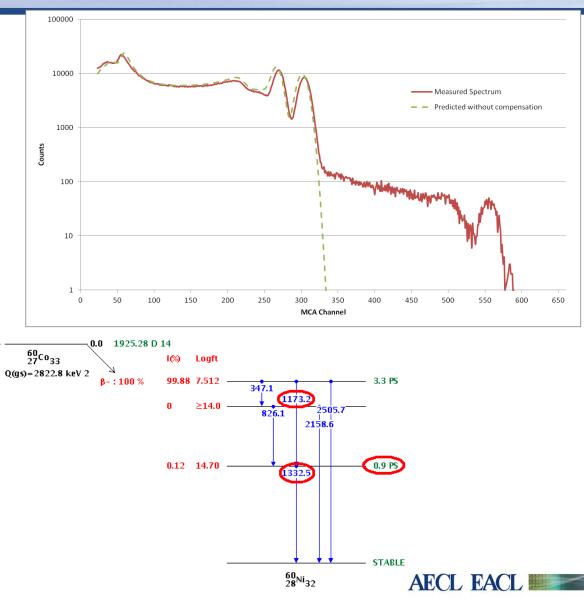

Noble Gas Monitor Introduction

- AECL is a major producer of medical isotopes in the world
- Radioactive noble gases are produced during the production
- They are stored for weeks to let decay
- Then they are released through stack
- The quantity of the radioactive gases released is monitored and reported
- The monitor is mainly composed of
 - -Sample chamber
 - -Nal scintillator and Photomultiplier (PMT)
 - -Amplifier and discriminator

Calibration Methods

- Count rate in the ROI is proportional to the quantity of radioactive concentration in the sample chamber
- The proportional factor can be determined by using calibration source with known quantity
- Direct calibration is not practical
 - Gaseous radioactive sample hard to handle
 - Standard sample decaying away too fast
- Indirect calibration method
 - Simulate the detector with MCNP model
 - Validate the MCNP model with Co-60 measurement
 - Use the validated MCNP model to calculate the calibration factors for radioactive noble gases

Validating MCNP Output


- MCNP F8 tally gives the energy deposited in the NaI crystal
- MCNP output is the probability of a gamma photon depositing certain amount of energy in the scintillator
- Energy will be converted to light by the crystal, and converted to charge signal in PMT
- The signal will be amplified and measured using multichannel analyzer (MCA)
- MCA output is the energy spectrum, counts in the ADC channels
- Gaussian broadening to mimic the limited resolution of the PMT and amplifiers is the key of the validate comparison

		-						
.tal	ly 8	tally tally					distrik	ution.
cel	1 4 energ 2.0000 4.0000 6.0000 1.0000 1.2000 1.4000 1.6000	E+00 E-03 E-03 E-03 E-03 E-02 E-02 E-02	4.720 3.831 4.109 4.290 4.366 4.422 4.462	000E-08 086E-02 122E-05 923E-05 089E-05 089E-05 265E-05 251E-05 966E-05	0.0453 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001	D 6 5 5 5 5 5 5		
Probability	1.00E-(1.00E-(1.00E-(1.00E-(03	~~~			_		
Pro	1.00E-0	06 —						
	1.00E-(4.00		4.505	
	0.00E+00 5.00E-01 1.00E+00 1.50E+00 Energy (MeV)							
		.↑		Energ	y (iviev)		
	Counts			Pulse hei tally pea	ks			
	E		E ₁			E ₂	E	nergy
	2285 486 F103 F22						with the townorthy a	
		28	255	383	511	639	767	
				A: A				

FT AECL EACL

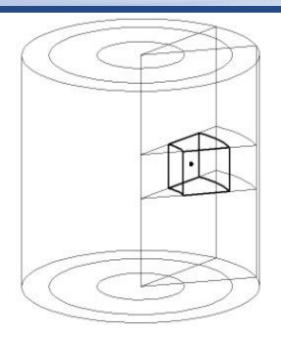
Discrepancy Cause by Coincidence

- There is no data in the MCNP output above 1.33MeV of the Co-60 source
- Co-60 has two main gamma energy peaks: 1.1732MeV and 1.3325MeV
- The two gamma photons are almost always emitted at the same time (>99%, T/2=0.9ps)
- Detector timing resolution is in 10ns order
- Detector will see summing energy peak of 2.5057MeV
- MCNP does not handle coincidence, will not see the summing peak



Point Source Coincidence Compensation

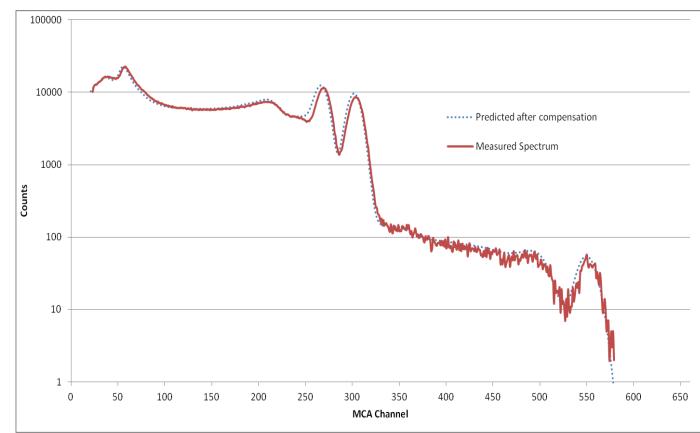
1.00F-0


- Assume the two coincident gamma photons are independent in their direction
 - According to A.C. Melissinos, the angle between two events are unevenly weighted
 - Weighing factor $w_{\theta} = 1 + \frac{\cos^2 \theta}{8} + \frac{\cos^4 \theta}{24}$
 - The maximum/minimum is 1.17
- Make two separate MCNP simulations:
 - a) assuming only 1.1732Mev peak
 - b) assuming only 1.3325MeV peak
- For the two photons of each disintegration there are four possibilities
 - Both miss the detector
 - Only a) hits the detector
 - Only b) hits the detector
 - Both hit the detector
- Combined output, c), will be

 $p_{ci} = 0.5 \times \left(p_{ai} \cdot p_{\bar{B}} + p_{bi} \cdot p_{\bar{A}} + \sum_{j=1,2,\dots,i-1} p_{aj} \cdot p_{b(i-j)} \right)$

Volume Source

- Coincidence summing is more significant when the detector has a larger solid angle
- Direct volume source MCNP simulation cannot be compensated
- Volume source can be approximately represented by a series of points
- After getting the compensated MCNP output of each point, the total output can be constructed with weighing factors
- Cylindrical symmetric and automatic batch calculation can simplify the work


$$\left(Z_i, R_j\right) = \left((0.5+i)\frac{H}{N_A+1}, \frac{2jR}{2N_R+1}\right)$$

$$W_{ij} = \frac{1}{N_A} \cdot \left(\left(\frac{2j+1}{2N_R + 1} \right)^2 - \left(\frac{2j}{2N_R + 1} \right)^2 \right)$$

Result

- Co-60 volume source: 44303Bq
- Measurement time: 1191s
- Vertical 6 sections
- Radial 15 sections
- Total of 180 MCNP simulations
- Total run time on PC: about 46 hours
- Verified that the MCNP model (geometry, material, etc.) is correct

Conclusions

- Indirect calibration with MCNP model can be convenient after being validated
- Co-60 may have coincidence summing in detectors causing discrepancy between measured and MCNP calculated data
- Point source Co-60 coincidence summing can be compensated outside MCNP using probability theory based on assumptions
- Point source method can be extended to volume source case

Thanks!

A AECL EACL