Higgs: theory review

Stefania Gori

Perimeter Institute for Theoretical Physics

2014 CAP Congress / Congrès de l'ACP 2014

Sudbury, June 17th 2014

The plan

1. Introduction: the discovery of a new boson

2. The Higgs in the Standard Model

- Mass
- Properties (production and decays)

3. Beyond the Standard Model Higgs bosons

- Higgs couplings (loop and tree level)
- Interplay with direct searches of New Physics particles
- Exotic decays

Focus on Supersymmetry

We have a new boson!

After 50 years from the theoretical proposal & ~40 years of experimental searches:

July 4th, 2012: ATLAS and CMS: "We have observed a new boson"

Francois Englert

Peter Higgs

2013

We have a new boson!

After 50 years from the theoretical proposal & ~40 years of experimental searches:

July 4th, 2012: ATLAS and CMS: "We have observed a new boson"

What determines the Higgs characteristics?

The Higgs mass is not predicted by the Standard Model (SM)

However, once it is fixed, the full phenomenology of the Higgs is univocally determined

The SM can only "predict indirectly" the Higgs mass:

Putting together all the info from the measurement at LEP and at Tevatron of the electroweak precision observables

$$m_h = 91^{+30}_{-23}\,{
m GeV}$$

The production of the Higgs...

...and its decays

125 GeV

How well do we know?

State of the art for the SM computation

• $h \rightarrow ff$ QCD up to NNNNLO

Baikov, Chetyrkin, Kühn, Steinhauser ('97–'05)

• h $\rightarrow \gamma\gamma$ / gg

full 2-loop result + h.o. improvements Spira, Djouadi, Graudenz, Zerwas '95; ... Actis, Passarino, Sturm, Uccirati '07,'08

• h \rightarrow WW / ZZ

NLO for stable W/Z bosons Fleischer, Jegerlehner '81; Kniehl '91; Bardin, Vilenskii, Khristova '91 NLO for off-shell/decaying W/Z bosons Bredenstein, Denner, Dittmaier., Weber '06

Parametric + theoretical uncertainty of BRs h
ightarrow bb $au^+ au^-$ WWZZ $m_h \,\,[{
m GeV}]$ $c\bar{c}$ $\gamma\gamma$ ggDominated 5%3%6%5%5%12012%10%by $\delta \Gamma$ LHC Higgs XS WG '10-'13 h→bb

How well do we know?

State of the art for the SM computation

• $h \rightarrow ff$ QCD up to NNNNLO

Baikov, Chetyrkin, Kühn, Steinhauser ('97–'05)

• h \rightarrow $\gamma\gamma$ / gg

full 2-loop result + h.o. improvements Spira, Djouadi, Graudenz, Zerwas '95; ... Actis, Passarino, Sturm, Uccirati '07,'08

• h \longrightarrow WW / ZZ

NLO for stable W/Z bosons Fleischer, Jegerlehner '81; Kniehl '91; Bardin, Vilenskii, Khristova '91 NLO for off-shell/decaying W/Z bosons Bredenstein, Denner, Dittmaier., Weber '06

Parametric + theoretical uncertainty of BRs $h
ightarrow b ar{b}$ $m_h \,\,[{
m GeV}]$ $au^+ au^-$ WWZZ $c\bar{c}$ $\gamma\gamma$ ggDominated 5%3%6%10%5%5%12012%by $\delta\Gamma$ LHC Higgs XS WG '10-'13 h→bb

		Uncertainties		NLO/NNLO/NNLO+	
Numbers for the 7 TeV LHC:	$m_h = 126 { m GeV}$	scale	PDF4LHC	\mathbf{QCD}	$\mathbf{E}\mathbf{W}$
	\mathbf{ggF}	8-10%	8%	> 100%	5%
	\mathbf{VBF}	1%	2-3%	5%	5%
	$\mathbf{W}\mathbf{h}$	1%	4%	$\mathbf{25\%}$	7%
	$\mathbf{Z}\mathbf{h}$	2%	4%	$\mathbf{30\%}$	5%
	\mathbf{tth}	9%	9%	5%	?

The Higgs as a portal to New Physics

The discovery of the Higgs is the manifestation of the hierarchy problem

 $V(H) = -\mu^2 H^\dagger H + \lambda (H^\dagger H)^2$

Fundamental scale beyond the SM: $\Lambda \approx M_{_{Pl}} = 10^{^{19}} \text{ GeV} (Planck scale)$

Needed a cancellation to the precision of 10^{-32} to have m_h(physical) ≈ 125 GeV 14884157194850192375385501928538182559-14884157194850192375385501928538166934 = 125²

Whatever cancels the quadratic sensitivity of the Higgs mass to the high energy scale must:

couple to the Higgs
 be relatively light (TeV-scale?)

Testing the Higgs to discover New Physics (NP)

Beyond the Standard Model Higgs

Beyond the Standard Model Higgs

Supersymmetry and the hierarchy problem

An elegant way to keep quantum corrections to the Higgs mass under control

What are the implications?

The mass of the Higgs is predicted in concrete SUSY models

Example: in the Minimal Supersymmetric Standard Model (MSSM) MSSM: a two Higgs doublet model.

In total: 2 scalar Higgs bosons, 1 pseudoscalar and 1 charged Higgs

$$\begin{split} m_h^2 \simeq \underbrace{M_Z^2 \cos^2 2\beta}_{TZ} + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \begin{bmatrix} X_t^2 \\ \overline{M_{Susy}^2} \left(1 - \frac{X_t^2}{12M_{Susy}^2} \right) + \log \frac{M_{Susy}^2}{m_t^2} \end{bmatrix} \\ \text{At the tree level, the MSSM predicts} & \text{Stop loop contributions} \\ \text{a quite low Higgs mass} & \mathcal{M}_{stop}^2 = \begin{pmatrix} m_{Q_3}^2 + m_t^2 + D_L & m_t X_t \\ m_t X_t & m_{u_2}^2 + m_t^2 + D_R \end{pmatrix} \end{split}$$

Higgs mass directly connected to the stop spectrum

What are the implications?

The mass of the Higgs is predicted in concrete SUSY models

Example: in the Minimal Supersymmetric Standard Model (MSSM)

What are the implications?

The mass of the Higgs is predicted in concrete SUSY models

Example: The NMSSM: a two Higgs doublet + 1 singlet model. $\mathcal{W} \supset \mathcal{O} H_1 H_2$

In total: 3 scalar Higgs bosons, 2 pseudoscalar and 1 charged Higgs $(m_h^2)_{
m tree} \lesssim m_Z^2 \cos^2 2eta + \lambda^2 v^2 \sin^2 2eta)$

*m*_∎3 [GeV]

Carer

1/20

Hall, Pinner, Ruderman, 1112.2703

Higgs couplings (loop)

12/20

Higgs di-gluon/di-photon coupling

Stops & Higgs coupling to gluons

Higgs di-gluon/di-photon coupling

Stops & Higgs coupling to gluons

Staus & Higgs coupling to photons

13/20

Higgs di-gluon/di-photon coupling

Stops & Higgs coupling to gluons

Staus & Higgs coupling to photons

S.Gori

13/20

Complementarity with direct searches

Measuring more and more precisely the coupling of the Higgs to gluons and photons gives us info on the Susy (stop/stau) spectrum

Complementarity with direct searches:

Staus

No bounds from direct searches of Drell-Yan produced staus

(if promptly decaying)

Higgs couplings (tree)

$$\begin{pmatrix} H_u \\ H_d \end{pmatrix} = \begin{pmatrix} v \sin \beta \\ v \cos \beta \end{pmatrix} + \frac{1}{\sqrt{2}} R_\alpha \begin{pmatrix} h \\ H \end{pmatrix} + \frac{i}{\sqrt{2}} R_\beta \begin{pmatrix} G \\ A \end{pmatrix}$$
$$R_\alpha = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, R_\beta = \begin{pmatrix} \sin \beta & \cos \beta \\ -\cos \beta & \sin \beta \end{pmatrix}$$

Higgs couplings (tree)

$$\begin{pmatrix} H_u \\ H_d \end{pmatrix} = \begin{pmatrix} v \sin \beta \\ v \cos \beta \end{pmatrix} + \frac{1}{\sqrt{2}} R_\alpha \begin{pmatrix} h \\ H \end{pmatrix} + \frac{i}{\sqrt{2}} R_\beta \begin{pmatrix} G \\ A \end{pmatrix}$$
$$R_\alpha = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, R_\beta = \begin{pmatrix} \sin \beta & \cos \beta \\ -\cos \beta & \sin \beta \end{pmatrix}$$

The measurement of these couplings give information about the spectrum of the additional Higgs bosons

Looking for additional Higgs bosons

Complementarity with direct searches of additional Higgs bosons:

CMS-PAS-HIG-12-033

CMS-PAS-HIG-13-021

Non-SM Higgs couplings: invisible Higgs

Beyond the SM theories can have particles lighter than the Higgs boson

A typical example:

models with a Dark Matter (DM) candidate with $M_{DM} \le M_{h}/2 \sim 60 \text{ GeV}$

These models can predict a non-zero $BR(h \rightarrow DM DM)$

Non-SM Higgs couplings: invisible Higgs

Beyond the SM theories can have particles lighter than the Higgs boson

A typical example:

models with a Dark Matter (DM) candidate with $M_{DM} \le M_{h}/2 \sim 60 \text{ GeV}$

These models can predict a non-zero $BR(h \rightarrow DM DM)$

Searches for an "invisible Higgs boson" are already performed at ATLAS and CMS • Higgs produced in VBF: $BR(h \rightarrow inv) \leq 69\% (53\%)$ CMS PAS HIG-13-013 • Higgs produced in association with a leptonic Z: $BR(h \rightarrow inv) \leq 75\% (91\%)$ CMS PAS HIG-13-018 $BR(h \rightarrow inv) \leq 75\% (62\%)$ ATLAS 1402.3244 • Higgs produced in association with a Z decaying to bottom quarks: $BR(h \rightarrow inv) \leq 1.82 (1.99)$ CMS PAS HIG-13-028

Higgs exotic decays

h→NP particles

is an extremely rich theoretical and experimental physics program

1. Well motivated:

very many models predict NP particles only very weakly coupled to the SM particles. The Higgs can give us access to the "dark sector": ex. $|H|^2 |S|^2$

"Dark sectors" Forces, particles, dark matter

2. Theoretically it is easy to get sizable Higgs exotic branching ratios: it is sufficient a small coupling of the Higgs to NP particles, to get a sizable (≥10%) branching ratio (the Higgs is very narrow)

Higgs exotic decays

h→NP particles

is an extremely rich theoretical and experimental physics program

1. Well motivated:

very many models predict NP particles only very weakly coupled to the SM particles. The Higgs can give us access to the "dark sector": ex. $|H|^2 |S|^2$

"Dark sectors" Forces, particles, dark matter

2. Theoretically it is easy to get sizable Higgs exotic branching ratios: it is sufficient a small coupling of the Higgs to NP particles, to get a sizable (≥10%) branching ratio (the Higgs is very narrow)

3. Experimentally hidden if we do not look for them with dedicated searches Projections for the 13 TeV LHC show that, with 300 fb⁻¹ data, we will not determine the width of the Higgs with an accuracy better than ~10%

Exotic Decays of the 125 GeV Higgs Boson, 1312.4992

D. Curtin, R. Essig, SG, P. Jaiswal, A. Katz, T. Liu, Z. Liu, D. McKeen, J.Shelton, M. Strassler, Z. Surujon, B. Tweedie, Y-M. Zhong

A simple theory for a multitude of signatures

Example. Very simple extension of the SM: SM + singlet real scalar

$$\Delta \mathcal{L} = rac{oldsymbol{\zeta}}{2} s^2 |H|^2$$

A simple theory for a multitude of signatures

Example. Very simple extension of the SM: SM + singlet real scalar

$$\Delta \mathcal{L} = rac{oldsymbol{\zeta}}{2} s^2 |H|^2$$

	(experiment) h \rightarrow 4b \searrow		(theory) aa → 4b	_		
	Projected/Current		quarks allowed		quarks suppressed	
Decay	$2\sigma~{ m Limit}$	Produc-		Limit on		Limit on
Mode	$\mathrm{on}\operatorname{BR}(\mathcal{F}_{\mathrm{i}})$	tion	$\frac{\text{BR}(\mathcal{F}_{i})}{\text{BR}(\text{non}-\text{SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm BR}({\rm non-SM})$	$\frac{\mathrm{BR}(\boldsymbol{\mathcal{F}}_{\mathrm{i}})}{\mathrm{BR}(\mathrm{non}-\mathrm{SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm BR}({\rm non-SM})$
\mathcal{F}_i	$7/8~[14]~{ m TeV}$	Mode		7/8 [14] TeV		7/8 [14] TeV
$b\bar{b}b\bar{b}$	$0.7^R \; [0.2^L]$	W	0.8	0.9 [0.2]	0	_
bb au au	$>1 \; [0.15^L]$	V	0.1	> 1 [1]	0	_
$bar{b}\mu\mu$	$(2-7)\cdot 10^{-4}$ T	G	$3 imes 10^{-4}$	0.6 - 1	0	_
	$[(0.6-2)\cdot 10^{-4}]^T]$			[0.2-0.7]		
au au au	$0.2-0.4^R \mathrm{[U]}$	G	0.005	40 - 80 [U]	1	$0.2 - 0.4 \mathrm{[U]}$
$ au au\mu$	$(3-7) \cdot 10^{-4} T [U]$	G	3×10^{-5}	$10-20~[{ m U}]$	0.007	$0.04 - 0.1 \ [\mathrm{U}]$
$\mu\mu\mu\mu$	$1 \cdot 10^{-4} \ R \ [U]$	G	$1 \cdot 10^{-7}$	1000 [U]	$1 \cdot 10^{-5}$	10 [U]

Conclusions & Outlook

The Higgs is a unique laboratory to test New Physics

Staus direct searches

At the LHC, direct searches for promptly decaying staus are difficult

Improved strategies to look for our light staus?

Vacuum stability in the SM

We live in a metastable minimum

The mass of the Higgs

A mass that one could have expected?

