

IceCube-DeepCore-PINGU

IPP AGM/Town Hall Meeting June 2014

Darren R. Grant

IceCube

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing

IceCube (top centre view)

IceCube

IceCube-DeepCore

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing

IceCube-DeepCore top view

IceCube-DeepCore

IceCube-DeepCore-PINGU

© [2011] The Pygos Group

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing
- Add 40 strings (baseline target)
 - ~20m string spacing
 - 3-5m DOM spacing
 - ~20x higher photocathode density

IceCube-DeepCore-PINGU top view

The physics with future atmospheric neutrino detectors

Covered in today's talk

- Gain sensitivity to atmospheric neutrinos in the region below 10 GeV with very high statistics
 - Provide a definitive measurement of the neutrino mass hierarchy (NMH)
 - Will help pin down $(\Delta m_{23})^2$ and test maximal mixing, v_{τ} appearance
- Probe lower mass WIMPs
- Gain increased sensitivity to supernovae neutrino bursts, Earth tomography
- Initiate an extensive calibration program to improve systematics knowledge
- Pathfinder technological R&D for the Megaton Ice Cherenkov Array (MICA)

Using atmospheric neutrinos to measure the NMH

Up to 20% differences in ν_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

arXiv:1401.2046

- Distinctive (and quite different) hierarchy-dependent signatures are visible in both the track and cascade channels
 - Full MC for detector efficiency, reconstruction, and particle ID included

PINGU and the NMH - predicted sensitivity

- With baseline geometry, a determination of the mass hierarchy with 3σ significance appears possible with 3.5 years of data
 - Primary estimate uses parametric detector response model based on simulations
 - Vetted against full Monte Carlo studies with more limited statistics and range of systematics
- Optimization of detector geometry & analysis techniques and more detailed treatment of systematics underway

PINGU and the NMH - predicted sensitivity

- With baseline geometry, a determination of the mass hierarchy with 3σ significance appears possible with 3.5 years of data
 - Primary estimate uses parametric detector response model based on simulations
 - Vetted against full Monte Carlo studies with more limited statistics and range of systematics
- Optimization of detector geometry & analysis techniques and more detailed treatment of systematics underway

PINGU and the NMH - in broad context

- Several current or planned experiments will have sensitivity to the neutrino mass hierarchy in the next 10-15 years
 - NB: median outcomes shown large fluctuations possible
- Widths indicate main uncertainty
 - LBNF/NOvA: δ_{CP}
 - JUNO: σ_E (3.0-3.5%)
 - PINGU/INO: θ_{23} (38.7°–51.3°, 40°–50°)
 - Other projections presented here assume worst-case parameters (1st octant)
- PINGU timeline based on aggressive but feasible schedule

• LBNE from LBNE-doc-8087-v10, Hyper-K from arXiv:1109.3262 (2011), all others from Blennow

Path to PINGU

- Jan 2014 PINGU Letter of Intent
- May 2014 P5 decision: "Further development for PINGU is recommended"; Application as IPP project submitted
- Jun 2014 Submission of CFI IF for PINGU project
- Fall 2014 US NSF white paper/Early Concept Proposal submitted for review
- Jun 2015 MREFC (major research equipment and facilities construction) Conceptual Design submission; CFI IF award decision
- Sep 2015 CDR passed/begin R&RA funding
- Jun 2016 Preliminary design review
- Jan 2017 Final design review; start construction ** remainder CFI IF released
- Dec 2018 first 8 PINGU strings
- Dec 2019 next 18 PINGU strings
- Dec 2020 PINGU complete

IceCube-DeepCore-PINGU and Canada

- The program is (quickly) developing
 - Currently 5 faculty (Alberta, Toronto) @ 2.0 FTE, 1 PDF, 2 PhD students, 4 summer students(~3.5% direct project impact within IceCube)
 - See talks by Ken Clark, Tania Wood, Sarah Nowicki this week
 - increasing to 6 faculty @ 3.7 FTE by 2017 (~8% direct impact IceCube; 30% of PINGU)
- Compute Canada resources have permitted key contributions:
 - nearly 1/2 the collaboration's GPU computing
 - ~20% of the collaboration's CPUs
 - generated the full simulation sets for PINGU design studies and DeepCore analyses
 - completed the high energy neutrino search analysis
- Building on established collaboration leadership:
 - Canadian researchers hold positions on the Collaboration, Publications, and Trigger-Filter-Transmission Boards; appointed as convener for the low-energy analysis group; D. Grant appointed co-convener for the PINGU upgrade

IceCube-DeepCore-PINGU and Canada

- Activities primarily supported via NSERC SAP Discovery Grants (renewal NOI to be submitted August 2014)
- CFI IF (in preparation). Full in-kind support secured for calibration and electronics R&D activities (in part at TRIUMF)
 - funding for ~30% of the PINGU optical modules (pending NSF MREFC).

Start date	End date	Source	Value
Apr 2010	Mar 2013	NSERC (SAP Discovery, Individual)	\$190,000
Apr 2013	Mar 2014	NSERC (SAP Discovery, Project)	\$109,000
Jan 2014	Dec 2014	Compute Canada (RAC)	\$975,936
Apr 2014	Mar 2015	NSERC (SAP Discovery, Project)	\$180,000
Sep 2015	Dec 2018	CFI IF (in preparation)	\$12,200,000

Summary and Outlook

- IceCube and DeepCore paved the way:
 demonstration of a prolific low-energy neutrino
 physics in the Antarctic ice with leading sensitivity in
 the indirect dark matter search and a robust
 atmospheric neutrino oscillation programs of
 lceCube. A rich on-going analysis program.
- PINGU is being optimized
 - String and optical module placement has a fairly broad minimum for the NMH sensitivity.
 - Additional detectors (increasing from 60 to 96 modules per string) improves the resolution at low energies, significantly moving the 3 year significance from 2.8σ to nearly 3.3σ for a 10% increase in project cost.
- Beyond the atmospheric neutrino measurements, PINGU will increase the sensitivity to the low-mass indirect WIMP searches, supernova neutrinos, Earth tomography...

PINGU indirect dark matter search

© [2011] The Pygos Group

- PINGU advantages include:
 - Use of the similar hardware and deployment techniques as IceCube would significantly reduce project risk
 - <u>Could be quick</u>, dependent on funding (2 years of procurement and fabrication; 2-3 years of deployment)
 - Is a natural part of a Next Generation IceCube Observatory (high energy extension, surface veto array). P5 final draft report "...and we encourage continued work to understand systematics. PINGU could play a very important role as part of a larger upgrade of IceCube, or as a separate upgrade, but more work is required."
 - NSF MREFC, and international partner proposals are now in preparation (still very early days of detector development; interested? come visit us)
- PINGU as a potential stepping stone: acting as a testbed for new photodetectors could lead to a multi-megaton fiducial detector (MICA) reaching a O(10 100 MeV) in the ice (supernova neutrinos, very low-mass WIMP searches, (potentially) proton decay).

The IceCube-PINGU Collaboration

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

Federal Ministry of Education & Research (BMBF)
German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY)
Inoue Foundation for Science, Japan
Knut and Alice Wallenberg Foundation
NSF-Office of Polar Programs
NSF-Physics Division

Swedish Polar Research Secretariat
The Swedish Research Council (VR)
University of Wisconsin Alumni Research
Foundation (WARF)
US National Science Foundation (NSF)

Backup slides

IceCube-DeepCore-PINGU

- 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing
- Add 40 strings (baseline target)
 - ~20m string spacing
 - 3-5m DOM spacing
 - ~20x higher photocathode density

© [2011] The Pygos Group

Oscillations with Atmospheric Neutrinos

- Neutrinos oscillating over one Earth diameter have a v_µ survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects below ~12 GeV
- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the up-down ratio approach

PINGU's Atmospheric v Signal

N(Events) Expected in PINGU per Year			
	Trigger Detector	Pass Baseline Analysis	
v _e CC	52k	26k	
ν _μ CC	86k	35k	
V _T CC	6.4k	2.7k	
v _x NC	17k	7.9k	

1 GeV < E < 80 GeV

PINGU and the NMH

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences clearly
 visible in expected
 atm. muon (v + v) rate
 even with 1 year's data
 - Note: detector resolutions not yet included here

PINGU and the NMH

- Cannot distinguish v from v directly – rely instead on differences in fluxes, cross sections (and kinematics)
- Differences clearly
 visible in expected
 atm. muon (v + v) rate
 even with 1 year's data
 - Note: detector resolutions not yet included here

PINGU and the NMH

- Once detector resolutions are included the signature of the hierarchy is apparent by looking at the pattern of expected excesses and deficits in the E vs. cos(θ_z) plane
 - Structure of the pattern gives some protection against systematics
 - Note: reconstructions included in these plots, but not yet particle ID

PINGU Particle ID

- ν_μ CC events distinguishable by the presence of a muon track
 - Distinct signatures observable in both track (ν_μ CC) and cascade (ν_e and ν_τ CC, ν_x NC) channels

PINGU and the NMH - extracting the sensitivity

Fisher Information Matrix

Likelihood Ratio Analysis

- Estimations from the full simulation operating on event histograms in Energy and cos(zenith)
 - Fast evaluation using the Fisher Information Matrix (FIM) where the gradients at each point fully describe the parabolic minimum (invert and obtain the full covariance matrix for the experiment
 - Full analysis from pseudo data sets applied as templates; LLR provides degree of agreement between pseudo set and one hierarchy vs. the other.
 - The Likelihood distributions are fit well by Gaussians; the two methods agree

PINGU and the NMH - applying the systematics

Parameter	Description
Δm_{31}^2 , ϑ_{23} , ϑ_{13}	Oscillation parameters
v / \overline{v} cross-section	Cross-section/flux normalization (fully degenerate)
A _{eff} energy dependence	Degenerate with spectral index of atmospheric flux
Energy scale	$E_{\rm reco}/E_{\rm true}$

- Strongest impact from the Energy Scale and cross-section normalization, δ_{CP} has a minimal effect.
- Additional systematics currently being incorporated:
 - Particle ID performance
 - Cross-section details
 - Ice Model

PINGU Digital Optical Module (PDOM)

