Neutrinos at the South Pole -
The PINGU Detector

Ken Clark
University of Toronto
The IceCube Neutrino Telescope

- **IceCube Lab**
- **IceTop**
 - 81 Stations
 - 324 optical sensors
- **IceCube Array**
 - 86 strings including 8 DeepCore strings
 - 5160 optical sensors
- **DeepCore**
 - 8 strings spacing optimized for lower energies
 - 480 optical sensors
- **Eiffel Tower**
 - 324 m
- **Bedrock**
The IceCube Neutrino Telescope

- IceCube Lab
- IceTop 81 Stations 324 optical sensors
- IceCube Array 86 strings including 8 DeepCore 5160 optical sensors
- DeepCore 8 strings-spacing optimized 480 optical sensors
- Eiffel Tower 324 m
- Bedrock
- Cables and DOMs

K. Clark - CAP Congress 2014
How do we Detect Neutrinos?

- IceCube separates neutrino interactions into two types:
Events in the Detector

- Events are separable using their signature in the detector

CC Muon Neutrino

\[\nu_\mu + N \rightarrow \mu + X \]

“Track”

NC Neutrino

\[\nu_X + X \rightarrow \nu_X + X \]

“Cascade”
• 78 Strings
• 125m string spacing
• 17m DOM spacing

IceCube

10 T eV
1 EeV
1 T eV
100 GeV
10 GeV
1 GeV
100 MeV
10 MeV
100 MeV
10 GeV
100 GeV
1 TeV
10 TeV
1 EeV

IceCube

K. Clark - CAP Congress 2014
IceCube Results
IceCube + DeepCore

- 78 Strings
- 125m string spacing
- 17m DOM spacing
- Add 8 strings
- 75m string spacing
- 7m DOM spacing
DeepCore Results

- Approximately 1 year of data analyzed
- High rate in detector provides large event sample
- No-oscillation hypothesis rejected at 5.6σ
DeepCore Results

- Approximately 1 year of data analyzed
- High rate in detector provides large event sample
- No-oscillation hypothesis rejected at 5.6σ
Even Lower Energies

- Deep Core is a success, but we get access to more physics with a lower threshold

- muon neutrino disappearance

- maximal θ_{23} measurement

- lower energy dark matter

- neutrino mass hierarchy
IceCube + DeepCore + PINGU

- 78 Strings
- 125m string spacing
- 17m DOM spacing
- Add 8 strings
 - 75m string spacing
 - 7m DOM spacing
- Add 40 strings
 - 20m string spacing
 - 5m DOM spacing
Mass Hierarchy Determination

- Experiments use the difference in MSW effect for ν and anti-ν
- Combine with difference in ν and anti-ν cross-section
Neutrino Oscillograms

- The cross-section and flux are different for ν_μ and $\bar{\nu}_\mu$
- The patterns are therefore different!
Mass Hierarchy Determination

Cascade-Like Events

Track-Like Events

- Difference in counts between hierarchies illustrates distinguishability
- Event selection, reconstruction not included here
The Bottom Line

- Most important question is how long does it take to make a measurement?
Future of the NMH Measurement

- **MANY** caveats
 - median outcome shown
 - width indicates effect of main uncertainty ($\delta_{CP, \theta_{23}}$)
 - dates are also bound to change as time goes on

after Blennow et al., arXiv:1311.1822
Conclusion

- IceCube and DeepCore have been very successful and have shown that particle physics is possible in ice
- PINGU will provide insight into the nature of the NMH
- Canada has taken a leading role in the development of PINGU, responsible for all simulation while contributing to analysis and reconstruction
Backup
IceCube + DeepCore

- Addition of extra strings in closer proximity lowers the detection threshold energy
IceCube + DeepCore

• Addition of extra strings in closer proximity lowers the detection threshold energy

• This allows for sensitivity at the energy of an oscillation minimum
Distinguishability

\[
\frac{N_{IH} - N_{NH}}{\sqrt{N_{NH}}}
\]

- Add in the proper reconstruction of the events