Inferring Axon Diameter Sizes using Monte Carlo Simulations of Magnetic Resonance Oscillating Gradient Spin Echo Sequences

ME Mercredi¹, TJ Vincent^{2,3}, SL Herrera¹, R Buist⁴, CP Bidinosti^{1,2}, M Martin^{1,2,4}

¹Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada, ²Physics, University of Winnipeg, Manitoba, Canada, ³Astronomy & Astrophysics, University of Toronto, Ontario, Canada, ⁴Radiology, University of Manitoba, Manitoba, Canada

Introduction

- Diffusion-weighted magnetic resonance imaging (MRI) can be used to infer axon diameter distributions in brain tissue for axons > 5 μ m.
- \square We have developed and are optimizing a new method for the measurement of the size of very small (less than or equal to 1 µm) axon diameters.

Magnetic Resonance Overview

- Ensemble of spins in a magnetic field \mathbf{B}_0 produces a net magnetization \mathbf{M}_0 along the direction of the field
- □ An RF pulse applied perpendicular to \mathbf{B}_0 will tip the magnetization into the transverse plane
- $\square \quad \mathbf{M}_0 \text{ precesses about } \mathbf{B}_0 \text{ at a frequency proportional to the magnetic field,} \\ \text{generating a signal in a detector coil (by Faraday's Law)}$

Diffusion

- Diffusion is the random migration of particles over time due to the vast number of collisions that occur at the microscopic level
- □ Mean-squared displacement depends on the diffusion time Δ as described by Einstein's relation:

$$\langle (\Delta \mathbf{r})^2 \rangle = 6D\Delta$$

where D is the diffusion coefficient, a measurement of the amount of diffusion

Restricted Diffusion

- □ In a uniform medium, molecules are free to diffuse anywhere in the medium
- Barriers, such as those found in cellular tissues, can restrict molecular motion
- □ Measurements of diffusion as a function of Δ provides information about the structure in which the molecules are diffusing.

At short Δ , the particle appears to be free in its movement

At long Δ , the particle is restricted in its movement

Pulse Sequences

- □ In diffusion MRI, a sequence of magnetic fields, or a pulse sequence, is used to weight the signal to the diffusive motion of the particles
- Traditional pulse sequence used to measure diffusion is known as the Pulsed Gradient Spin Echo sequence (PGSE)
- □ PGSE involves two gradients of constant strength G applied back-to-back for duration δ , with the second gradient pulse applied at a time Δ after the first gradient pulse

PGSE (Pulsed Gradient Spin Echo)

Without Diffusion

OGSE (Oscillating Gradient Spin Echo)

- □ Used to make measurements at short diffusion times
- Replaces the rectangular pulses of PGSE with sinusoidally varying gradient pulses
- □ In OGSE, each period of the sine acts a diffusion weighting so that the spins are dephased by the first lobe, and rephased by the second lobe, similar to the rectangular gradients of the PGSE

Monte Carlo Simulations

- Test ability of OGSE to infer small axon sizes using Monte Carlo simulations
 <u>Steps:</u>
- Distribute N particles on a lattice
- □ Each particle undergoes a random walk
- □ After each time step, do the following for each particle:
 - 1. Update its position $(\mathbf{r}_k \rightarrow \mathbf{r}_k + \Delta \mathbf{r}_k)$
 - 2. Update its phase $(\varphi_k \rightarrow \varphi_k + d\varphi_k)$
 - D Phase increment $d\varphi_k$ depends on the magnetic field experienced by the particle
- $\Box \quad \text{The total signal collected at the end of the simulation (S) will be}$

$$S = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j} \right|$$

These particles (red) are diffusing on a lattice.

AxCaliber Model

- AxCaliber is a model for estimating axon distributions using diffusion MRI
- □ Model signal as coming from two compartments:

- $f_{\rm h}$: volume fraction of extracellular space
- $D_{\rm h}$: hindered diffusion coefficient (apparent extracellular diffusion coefficient)
- $D_{\rm i}$: Intracellular diffusion coefficient
- $w(r_i, \theta)$: Axon radius distribution (parameterized by θ)
- $e^{-\beta(r_i,D_i)}$: Analytical signal from single cylinder

Simulation Setup and Methods

- We model white matter as a collection of parallel, non-overlapping, impermeable cylinders
- Synthesize 400 diffusion-weighted signals using a cosine gradient spin echo sequence
 - □ Acquire signals at different cosine frequencies and amplitudes
- □ Repeat for different axon diameter distributions
 - □ Single radius
 - □ Gamma distribution
 - **Gaussian distribution**
- □ Fit signal data to AxCaliber model using χ^2 minimization

axon environment

Single Cylinder Simulation

- □ 57344 particles initialized inside a cylinder
 - Choose a radius
 - Set diffusion coefficient in cylinder to $1.0 \ \mu m^2/ms$
- □ Fit signal to analytical expression for cylinder signal
 - Extract radius and diffusion coefficient

Actual values	Fit values		
Radius (µm)	Radius (µm)	D (μm²/ms)	
1.0	1.004 ± 0.001	0.992 ± 0.007	
2.0	2.017 ± 0.006	1.001 ± 0.001	
3.0	3.037 ± 0.006	0.9984 ± 0.0007	

Single Cylinder Simulation

- □ Lattice of squared packed cylinders
 - Radius: 2 μm
 - Diffusion coefficients: 1.0 μ m²/ms (intracellular) and 2.5 μ m²/ms (extracellular)
 - Choose packing fraction
- □ 57344 particles uniformly distributed over substrate
- □ Fit to two compartmental model ($w(r, \theta) = \delta[r r_0]$)
 - Extract f_h and D_h

$f_{\rm h}$ (actual)	0.8	0.7	0.6	0.5
$f_{\rm h}$ (fit)	0.776 ± 0.002	0.670 ± 0.003	0.558 ± 0.003	0.456 ± 0.003
$D_{\rm h}~(\mu{\rm m}^2/{ m ms})$	2.482 ± 0.009	2.46 ± 0.01	2.41 ± 0.02	2.34 ± 0.02

Gamma Distribution of Axon Diameters

- □ 100 cylinders chosen from a Gamma distribution on a periodic lattice
- □ Simulations for different packing fractions (vary lattice size)
 - Five packing fractions ranging from approximately 0.3 to 0.8
- Allow water to diffuse:
 - Inside cylinders ($D_i = 1.0 \ \mu m^2/ms$)
 - Inside and around cylinders ($D_{ex} = 2.5 \ \mu m^2/ms$)
- □ Fit data to AxCaliber model
 - □ Extract distribution parameters (intracellular water only)
 - \Box Also extract *f*h, and *D*h (for intracellular and extracellular water)
 - $\Box \quad \text{Keep } D_{i} \text{ fixed}$

Gamma Distribution of Axon Diameters

- Water allowed to diffuse only within the cylinders
- In this case, we only need to fit the signal to the modeled intracellular signal
 - Extract Gamma distribution parameters
- □ Fitted distribution agrees fairly well with the actual distribution over the entire range of radii

Gaussian Distribution of Axon Diameters

- □ 100 cylinders chosen from a Gaussian distribution on a periodic lattice
 - Mean radius (μ) $\approx 2.56 \ \mu m$
 - Standard Deviation (σ) $\approx 0.77 \ \mu m$
- □ Simulations for different packing fractions (vary lattice size)
 - Packing fractions of 0.1, 0.3, and 0.4
- Allow water to diffuse:
 - Inside cylinders ($D_i = 1.0 \ \mu m^2/ms$)
 - Inside and around cylinders ($D_{ex} = 2.5 \ \mu m^2/ms$)
- □ Fit data to AxCaliber model
 - Extract μ , σ (intracellular water only)
 - Also extract fh and Dh (for intracellular and extracellular water)
 - Keep D_i fixed

Intracellular signal – Gaussian distribution

- Water allowed to diffuse only within the cylinders
- In this case, we only need to fit the signal to the modeled intracellular signal
- Extract Gaussian distribution parameters (mean and standard deviation)
- Fitted distribution agrees fairly well with the actual distribution over the entire range of radii

Gaussian Distribution: Full Signal

- When water is allowed to diffuse inside and around the cylinders, the model has trouble finding the correct axon distribution
- For a Gaussian distribution of radii, it can predict the mean radius, but not the width of the distribution
- Indicates that the extracellular signal used in the AxCaliber model needs to be modified

Gaussian distribution of diameters with a packing fraction of 0.4

Conclusions

- First step towards combining oscillating gradient measurements with axon diameter distribution models to infer distributions of small axon diameters in tissues
- □ Accurately predicted mean diameters of various models of white matter using oscillating gradients.
 - □ These diameters were at least a factor of two smaller than the smallest possible inferred diameters used in other simulations.
- We will improve the model of extracellular space to infer the total distributions more accurately
- Eventually would like to compare white matter fibre integrity in healthy and diseased mouse brains

Acknowledgments

□ Funding: NSERC, MHRC, CFI, and MRIF.

Manitoba Health Research Council

