CAP, June 17th 2014

Echoes of the early Universe

Phys. Rev. D 89, 043510 (2014)

[Work in collaboration with Mercedes Martin-Benito and Luis J. Garay](http://arxiv.org/abs/1209.4948)

In preparation

[Work in collaboration with Ana Blasco, Mercedes Martin-Benito and Luis J.](http://arxiv.org/abs/1209.4948) Garay

Eduardo Martín-Martínez Institute for Quantum Computing (UW) Perimeter Institute for Theoretical Physics

Looking for Signatures of QG today

- To test proposals for Quantum Gravity we need

i) predictions

AU ANTUNIA DE LA PORTO DE LA COSMOLOGIA E DE LA TRANSPORTO DE LA PORTO DE LA COSMOLOGIA

ii) experimental data encoding QG effects

- QG scales out of reach of experiments on earth

- Most promising window: COSMOLOGY

Looking for Signatures of QG today

- Have QG signatures really survived from the early Universe all the way to our current era?

- If so, how strong are they?

- Will it be possible to validate or falsify different QG proposals by looking at the data? Is the information RECOVERABLE?

> **We explore a simple way, based on a toy model, to assess the strength of the quantum signatures of the early Universe that might be observed nowadays**

Setting

- Particle detector coupled to matter fields from the early stages of the Universe until today:

Would the detector conserve any information from the time when it witnessed the very early Universe dynamics?

 $t_{Pl} \sim 10^{-44} s$; $T \sim 10^{17} s$

Early Universe dynamics

 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho\left(1-\frac{\rho}{\rho_{\star}}\right), \quad \rho_{\star} := \frac{6\pi G}{l^6}.$

GR vs Effective LQC

Early Universe dynamics

- Flat FRW with 3-Torus topology and matter source a massless scalar $\,\varphi\,$

- We will compare the response of the detector evolving under two different Universe dynamics which disagree only during the short time when matter-energy densities are of the order the Planck scale

GR vs Effective LQC

Gibbons-Hawking effect

- We consider a massless scalar field ϕ in the conformal vacuum
- **The proper time of comoving observers (who see an isotropic expansion) does not coincide with conformal time**

$$
\eta_c(t) = \frac{3L t^{2/3}}{2(12\pi G \pi_\varphi^2)^{1/6}}
$$

$$
\eta_q(t) = \frac{L}{l} \left(\frac{12\pi G}{\pi_{\varphi}^2} \right)^{1/6} t \cdot {}_2F_1 \left[\frac{1}{6}, \frac{1}{2}, \frac{3}{2}, -\left(\frac{12\pi G}{l^3} t \right)^2 \right] \longrightarrow \eta_c(t) + \beta
$$

The Unruh -De Witt model

$$
\hat{H}_I(t) = \lambda \chi(t) (\sigma^+ e^{i\Omega t} + \sigma^- e^{-i\Omega t}) \hat{\phi}[\vec{x}_0, \eta(t)]
$$

- **proper time of the detector (comoving)** *t*
- **coupling strength** λ
- **switching function** $\chi(t)$
- $[\vec{x}_{0},\eta(t)]$ world-line of the detector (stationary)

Probability of excitation

- T_0 : field in the conformal vacuum and detector in its ground state
- Transition probability for the detector to be excited at time T : At leading order $(\lambda \text{ small enough})$

$$
P_e(T_0, T) = \lambda^2 \sum_{\vec{n}} |I_{\vec{n}}(T_0, T)|^2 + \mathcal{O}(\lambda^4)
$$

$$
I_{\vec{n}}(T_0, T) = \int_{T_0}^{T} dt \frac{\chi(t)}{a(t)\sqrt{2\omega_{\vec{n}}}L^3} e^{-\frac{2\pi i \vec{n} \cdot \vec{x}_0}{L}} e^{i\left[\Omega t + \omega_{\vec{n}}\eta(t)\right]}
$$

$$
\vec{n} = (n_x, n_y, n_z) \in \mathbb{Z}^3 - \vec{0} \qquad \qquad \omega_{\vec{n}} = \frac{2\pi}{L} |\vec{n}|
$$

Do the effects wash out?

- Difference of probabilities $\Delta P_e(T_0, T) \equiv P_e^q(T_0, T) - P_e^c(T_0, T)$

- We split the integrals

 $I^c_{\vec{n}}(T_0, T) = I^c_{\vec{n}}(T_0, T_m) + I^c_{\vec{n}}(T_m, T)$ $I^q_{\vec{n}}(T_0, T) = I^q_{\vec{n}}(T_0, T_m) + e^{i\omega_{\vec{n}}}{}^{\beta}I^c_{\vec{n}}(T_m, T)$ $\eta_q(T_m) \approx \eta_c(T_m) + \beta$

Does the effect wash out?

- **Difference of probabilities** $\Delta P_e(T_0, T) \equiv P_e^q(T_0, T) P_e^c(T_0, T)$
- **We split the integrals**

 $I^c_{\vec{n}}(T_0, T) = I^c_{\vec{n}}(T_0, T_m) + I^c_{\vec{n}}(T_m, T)$ $I^q_{\vec{n}}(T_0, T) = I^q_{\vec{n}}(T_0, T_m) + e^{i\omega_{\vec{n}}}{}^{\beta}I^c_{\vec{n}}(T_m, T)$ $\eta_q(T_m) \approx \eta_c(T_m) + \beta$

$$
\Delta P_e(T_0, T) = \lambda^2 \sum_{\vec{n}} \left[\left| I_{\vec{n}}^q(T_0, T_m) \right|^2 - \left| I_{\vec{n}}^c(T_0, T_m) \right|^2 \right. \\
\left. + 2 \text{Re} \left(I_{\vec{n}}^{c*}(T_m, T) \left[e^{-i\beta \omega_{\vec{n}}} I_{\vec{n}}^q(T_0, T_m) - I_{\vec{n}}^c(T_0, T_m) \right] \right) \right]
$$

Probabilities: GR vs effective LQC

- **Difference of probabilities** $\Delta P_e(T_0, T) \equiv P_e^q(T_0, T) P_e^c(T_0, T)$
- **We split the integrals**

 $I^c_{\vec{n}}(T_0, T) = I^c_{\vec{n}}(T_0, T_m) + I^c_{\vec{n}}(T_m, T)$ $I^q_{\vec{n}}(T_0, T) = I^q_{\vec{n}}(T_0, T_m) + e^{i\omega_{\vec{n}}}{}^{\beta}I^c_{\vec{n}}(T_m, T)$ $\eta_q(T_m) \approx \eta_c(T_m) + \beta$

$$
\Delta P_{\rm e}(T_0, T) = \lambda^2 \sum_{\vec{n}} \left[\left| I_{\vec{n}}^q(T_0, T_m) \right|^2 - \left| I_{\vec{n}}^c(T_0, T_m) \right|^2 \right. \\
\left. + 2 \text{Re} \left(I_{\vec{n}}^{c*}(T_m, T) \left[e^{-i\beta \omega_{\vec{n}}} I_{\vec{n}}^q(T_0, T_m) - I_{\vec{n}}^c(T_0, T_m) \right] \right) \right]
$$

The relative difference on the detector's particle counting in both scenarios will be appreciably different even for long T

Sensitivity to the quantum parameters

- Any observations we may make on particle detectors will be averaged in time over many Planck times

$$
\langle P_e(T_0, T) \rangle_{\mathcal{T}} = \frac{1}{\mathcal{T}} \int_{T-\mathcal{T}}^T P_e(T_0, T') dT' \qquad \qquad \mathcal{T} \gg l^3/(12\pi G)
$$

- **Sub-Planckian detector** $\Omega \ll 12\pi G/l^3$
- **Estimator to study sensitivity with quantum of length**

$$
E = \left\langle \frac{\langle \Delta P_{\rm e}(T_0, T) \rangle_{\mathcal{T}}}{\langle P_{\rm e}^{\rm GR}(T_0, T) \rangle_{\mathcal{T}}} \right\rangle_{\Delta T}
$$

$$
\Delta T = T - T_{\text{late}}
$$

 ΔT *,* $T_{\text{late}} \gg l^3/(12\pi G)$

Sensitivity to the quantum parameters

$$
E = \left\langle \frac{\langle \Delta P_{\rm e}(T_0, T) \rangle_{\mathcal{T}}}{\langle P_{\rm e}^{\rm GR}(T_0, T) \rangle_{\mathcal{T}}} \right\rangle_{\Delta T}
$$

Exponential with the size of the spacetime quantum

- Cosmological observations could put stringent upper bounds to *l*

Sensitivity to the quantum parameters

$$
E = \left\langle \frac{\langle \Delta P_{\rm e}(T_0, T) \rangle_{\mathcal{T}}}{\langle P_{\rm e}^{\rm GR}(T_0, T) \rangle_{\mathcal{T}}} \right\rangle_{\Delta T}
$$

Sub-Planckian detector:

- -Low Energy gap (as compared to the Planck scale)
- -Observed nowadays (far from the Planck scale)
- -Long Detection time (as compared to the Planck scale)

Scenario 1: The detectors were switched on at a given total volume of the Universe

Scenario 2: The detectors have been switched on for the same amount of (proper) time

Stability of the results

Identical results in both scenarios

Early Universe dynamics

 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho\left(1-\frac{\rho}{\rho_\star}\right), \quad \rho_\star := \frac{6\pi G}{l^6}.$

GR vs Post-Einstenian gravity

- In the early universe there might not even be any notion of geometry

- There has to be an intermediate regime where we have effective (perturbed) Friedmann equations.

L **- Information about these corrections makes it all the way to nowadays in the noise spectrum of vacuum fluctuations and its recoverable at low energy.**

Conclussions

- **Although this is a toy model, it captures the essence of a key phenomenon: Quantum field fluctuations are extremely sensitive to the physics of the early Universe.**
- **The signatures of these fluctuations survive in the current era with a significant strength.**
- **We showed how the existence (or not) of a quantum bounce leaves a trace in the background quantum noise that is not damped and would be non-negligible even nowadays.**
- **The use of LQC in this derivation is anecdotical, and we believe that our main result is general:**

The response of a particle detector today carries the imprint of the specific dynamics of the spacetime in the early Universe

The response of a particle detector today carries the imprint of the specific dynamics of the spacetime in the early Universe

Decoherence mechanisms?

MOSTLY UNKNOWN

Quantum information lost, how about classical information?

Can quantum information survive a cosmological cataclysm? Ongoing Work:

Work in collaboration with Luis J. Garay, Mercedes Martin-Benito, Ana Blasco

How much information survives a Cosmological cataclysm!!!!

Cosmological cataclysm!!!!

information

Cosmological cataclysm!!!!

Two detectors: setting

B after the bounce

$$
H_{I} = \sum_{\nu=A,B} \lambda_{\nu} \chi_{\nu}(t) \sigma(\Omega_{\nu}, t) \sum_{n} \frac{1}{a(t) \sqrt{2L_{c}^{3} \omega_{n}}} \times (\hat{a}_{n} e^{-i\omega_{n}\eta(t)} e^{ik_{n} \cdot x_{\nu}} + \hat{a}_{n}^{\dagger} e^{i\omega_{n}\eta(t)} e^{-ik_{n} \cdot x_{\nu}})
$$

$$
U = 1 + U^{(1)} + U^{(2)} + O(\lambda^3)
$$

$$
U^{(2)} = -\int_0^t dt_1 \int_0^{t_1} dt_2 H_I(t_1) H_I(t_2)
$$

 $\rho_T = U \rho_0 U^{\dagger} = (1 + U^{(1)} + U^{(2)} + O(\lambda^3)) \rho_0 (1 + U^{(1)} + U^{(2)} + O(\lambda^3))^{\dagger}$ $\rho_T = \rho_0 + \rho_T^{(1)} + \rho_T^{(2)} + O(\lambda^3)$ $\rho_0=\rho_{A0}\otimes\rho_{B0}\otimes|0><0|$ $\rho_T^{(1)} = U^{(1)}\rho_0 + \rho_0 U^{(1)\dagger}$ $\rho_T^{(2)} = U^{(2)}\rho_0 + \rho_0 U^{(2)\dagger} + U^{(1)}\rho_0 U^{(1)\dagger}$

-How much information is RECOVERABLE?

Thanks!!

