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QUANTUM COSMOLOGY FROM LOOP QUANTUM GRAVITY AND SPINFOAM MODELS 

Quantum Cosmology 

!

!

!

Looking for Signatures of  QG today

 - To test proposals for Quantum Gravity we need

 - QG scales out of  reach of  experiments on earth

 - Most promising window: COSMOLOGY

i) predictions 
ii) experimental data encoding QG effects 



Looking for Signatures of  QG today

 - Have QG signatures really survived from the early Universe       
   all the way to our current era?

 - If  so, how strong are they?

We explore a simple way, based on a toy model, to 
assess the strength of  the quantum signatures of  the 

early Universe that might be observed nowadays

 - Will it be possible to validate or falsify different QG proposals          
   by looking at the data? Is the information RECOVERABLE?



Setting

 - Particle detector coupled to matter fields from the early stages of  the  
   Universe until today:

Would the detector conserve any 
information from the time when 

it witnessed the very early 
Universe dynamics?

tPl ⇠ 10�44s ; T ⇠ 1017s



Early Universe dynamics
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GR vs Effective LQC

l ~  quantum of  length

L ~  compactification scale



Early Universe dynamics

'

2 4 6 8 10

5

10

15

20

a(t)L

t

ac(t) =
(12⇡G⇡2

')
1/6

L
t1/3.

aq(t) =
l

L

 
⇡2
'

12⇡G

!1/6 "
1 +

✓
12⇡G

l3

◆2

t2
#1/6

.

GR vs Effective LQC

l ~  quantum of  length

L ~  compactification scale

 - Flat FRW with 3-Torus topology and matter source a massless scalar

 - We will compare the response of  the detector evolving under two  
   different Universe dynamics which disagree only during the short  
   time when matter-energy densities are of  the order the Planck scale



Gibbons-Hawking effect

 - We consider a massless scalar field     in the conformal vacuum

 - The proper time of  comoving observers (who see an isotropic  
   expansion) does not coincide with conformal time
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The Unruh -De Witt model

⌦
|0i = ��|ei

|ei = �+|0i

proper time of  the detector (comoving)

coupling strength

switching function

world-line of  the detector (stationary)

ĤI(t) = � �(t)(�+ei⌦t + ��e�i⌦t)�̂[~x0, ⌘(t)]
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Probability of  excitation

 -       : field in the conformal vacuum and detector in its ground stateT0

 - Transition probability for the detector to be excited at time     :T

 At leading order  (    small enough)�
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Do the effects wash out?

Ic~n(T0, T ) = Ic~n(T0, Tm) + Ic~n(Tm, T )

Iq~n(T0, T ) = Iq~n(T0, Tm) + ei!~n�Ic~n(Tm, T )

⌘q(Tm) ⇡ ⌘c(Tm) + �

�Pe(T0, T ) ⌘ P q
e (T0, T )� P c

e (T0, T )

 - We split the integrals

 - Difference of  probabilities
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Probabilities: GR vs effective LQC
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The relative difference on the detector's particle counting in 
both scenarios will be appreciably different even for long  T    T



Sensitivity to the quantum parameters

 - Any observations we may make on particle detectors will be averaged  
   in time over many Planck times
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 - Sub-Planckian detector ⌦ ⌧ 12⇡G/l3
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 - Estimator to study sensitivity with quantum of  length



Sensitivity to the quantum parameters
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Exponential with the size of  the spacetime quantum T    

 - Cosmological observations could put stringent upper bounds to  l



Sensitivity to the quantum parameters
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Sub-Planckian detector:	

-Low Energy gap (as compared to the Planck scale)	

-Observed nowadays (far from the Planck scale)	

-Long Detection time (as compared to the Planck scale)



Stability	  of	  the	  results

Scenario 1: The detectors were switched on at a given total volume 
of the Universe
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Stability	  of	  the	  results
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Scenario 2: The detectors have been switched on for the same 
amount of (proper) time



Stability	  of	  the	  results
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Identical results in both scenarios
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Early Universe dynamics

GR vs Post-Einstenian gravity

L

 - In the early universe there might not even be any notion of  geometry

 - There has to be an intermediate regime where we have effective 
(perturbed) Friedmann equations.

 - Information about these corrections makes it all the way to nowadays 
in the noise spectrum of  vacuum fluctuations and its recoverable at low 
energy.



Conclussions

 - Although this is a toy model, it captures the essence of  a key  
   phenomenon: Quantum field fluctuations are extremely sensitive to  
   the physics of  the early Universe.  
!!
-  The signatures of  these fluctuations survive in the current era with a  
    significant strength. 
!!
-  We showed how the existence (or not) of  a quantum bounce leaves   
   a trace in the background quantum noise that is not damped and     
   would be non-negligible even nowadays. 
!!
-  The use of  LQC in this derivation is anecdotical, and we believe   
   that our main result is general:

The response of  a particle detector today carries the imprint 
of  the specific dynamics of  the spacetime in the early Universe



Decoherence mechanisms?

The response of  a particle detector today carries the imprint 
of  the specific dynamics of  the spacetime in the early Universe

Quantum information lost, how about classical information?

MOSTLY UNKNOWN



Can quantum information survive a 
cosmological cataclysm?  

Ongoing Work:

Work in collaboration with 
 Luis J. Garay, Mercedes Martin-Benito, Ana Blasco



How much information survives a Cosmological 
cataclysm!!!!



Cosmological 
cataclysm!!!!

information



Cosmological 
cataclysm!!!!

?

information



Two detectors: setting

detector A

detector B detector A

detector B

A 

A and B  timelike separated
A before the bounce 
B after the bounce
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-How much information is RECOVERABLE?
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Thanks!!


