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One paradigm: Inflation

Extremes: Eternal Inflation



What can we know?

What we can know about the early Universe 
depends on what happens in the late Universe.
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•  We can’t directly see arbitrarily far into the past!
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•  We (almost) only measure what is on the light cone!
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•  In principle, we can infer what is inside the light cone.
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uµ(x, t) = ūµ + �uµ(x, t) (18)

r
µ

T̄µ⌫ = 0 (19)

r
µ

�Tµ⌫ = 0 (20)

�⇢(~x, t) =

Z
d3k

(2⇡)3
�⇢(k, t)ei

~

k·~x (21)

a(t) = a0t (22)

�s (23)

•  Small scale modes are stretched into large scale modes.  
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•  We are typically interested in statistics

Ensemble of initial conditions

We have only one realization -- Cosmic 
Variance
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• In practice restrictions:

•  We are limited to a few snapshots on the light cone.
•  We are limited by our ability to understand non-linear 

evolution.

• In principle restrictions:

•  Finite size past light cone.
•  Maximum wavelength.
•  Cosmic variance.
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Strange Initial Conditions

time

space

•  A first look at the CMB indicates that the initial 
conditions must be rather strange.

CMB

!!Need a Theory of Initial Conditions!!



Inflation

•  A non-diluting perfect fluid - Inflation!
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Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)
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Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.
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Perfect candidate: 
potential energy of a 
scalar field!

•  Grows the observable universe from a causally connected 
primordial patch.
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Inflationary Seeds of Density Perturbations
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•  The Universe is a small/hot system, so fluctuations likely:

H�1 ' 10�28m T ' 1012 GeV S ' 1014

•  An inflating Universe has thermodynamic properties:

•  Fluctuations in the inflaton source scalar perturbations in 
the metric. 

•  All light fields fluctuate - gravitational waves! 
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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
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p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the



???Discovery of Primoridal Tensors????
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FIG. 2.— BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The red curves show the lensed-⇤CDM theory
expectations — in the case of BB an r = 0.2 spectrum is also shown. The error bars are the standard deviations of the lensed-⇤CDM+noise simulations. The
probability to exceed (PTE) the observed value of a simple �2 statistic is given (as evaluated against the simulations). Note the very different y-axis scales for the
jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum.
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Discriminating Between Models

•  Powerful discriminator for different models.
•  Interesting tension with temperature power spectrum 

may hint at non-vanilla inflationary history.
•  Can distinguish alternatives to inflation (Ekpyrotic 

Universe, string gas cosmology, etc.)



Inflationary Baggage

•  Inflation has a lot of baggage:

•Potential is sensitive to Quantum Gravity corrections.
• Is the horizon problem really solved?
•Still need to resolve the initial singularity.
• Inflation can become future eternal.
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Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.
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Does the accelerated expansion ever end?

•  In a static or decelerating universe:
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No matter how slow, the phase transition always completes!
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Does the accelerated expansion ever end?

•  In an accelerating universe:

time

When the rate of pocket formation is lower than the rate of 
expansion, accelerated expansion doesn’t end everywhere!

Eternal Inflation Vilenkin,  Linde,  Guth



Our bubble does not evolve in isolation....

The collision of our bubble with others provides an 
observational test of eternal inflation.

Aguirre, MCJ, Shomer

• Do we live in an eternally inflating Universe?

Testing Eternal Inflation



Observational Tests of Eternal Inflation



⇤CDM

The data

WMAP7 W-Band data.......

28

FIG. 16. The posterior probabilities of the global parameters of the bubble collision (left) and texture (right) models, given
the WMAP 7-year data. The posterior is plotted as a function of one parameter, N̄

s

, for bubble collisions, and two parameters,
N̄

s

and ✏, for textures. The most probable regions containing 68% and 95% of the posterior probability are indicated by the
dotted and dashed lines in the bubble collision plot, and as dark and light regions in the texture plot. Both posteriors are
strongly peaked at N̄

s

= 0.

Applying the adaptive-resolution evidence calculation to the candidates produces the patch evidence ratios also
reported in Table VIII. No single candidate is strong enough to claim a detection on its own. However, as demonstrated
in Refs. [9, 11], it is possible for a number of weak candidates to favor the addition of relics to ⇤CDM even if their
individual evidence ratios are less than one: only by combining the results obtained for all candidates can the overall
predictive power of the underlying model be revealed. The posteriors on the global parameters of the bubble collision
and texture models, derived by combining the results from the candidates, are plotted in Fig. 16: both posteriors
are peaked at zero sources. The texture model’s dimensionless scale of symmetry breaking is constrained to be
2.6 ⇥ 10�5  ✏  1.0 ⇥ 10�4 (at 95% confidence), which, as the prior is defined only within the range 2.5 ⇥ 10�5 
✏  1.0⇥ 10�4, indicates that the WMAP data do not provide any interesting constraint on this parameter.

The WMAP 7-year data do not favour the addition of either bubble collisions or textures to ⇤CDM. As none of
the candidates exhibits significant evidence for the addition of sources to ⇤CDM, we do not check the candidates for
foreground residuals.

X. DISCUSSION

In Refs [9, 10] and [11], searches for bubble collisions and textures using earlier versions of the Bayesian source
detection pipeline were published. Each previous analysis shares a number of candidate features in common with the
current analysis, allowing consistency checks to be carried out between versions of the pipeline. Comparing results
between versions is non-trivial, and must take into account each change made to the algorithm. In particular:

1. The prior on the bubble collision size has changed from uniform in the range 2-11.25� to being proportional to
sin ✓

crit

in the range 2 � 90�. Ceteris paribus, this will reduce evidence ratios previously reported for bubble
collision candidates, particularly those at small scales.

2. The bubble collision template previously allowed for a discontinuity at the template boundary with amplitude
z

crit

. This parameter is now set to zero due to updated theoretical results [28, 29], and the bubble collision
model considered in this analysis is consequently nested within the model considered previously. The e↵ects
of removing the edge can be determined exactly using the Savage-Dickey Density Ratio [49]: the change in
evidence will be the ratio of the posterior and prior probabilities of the edge amplitude, evaluated at z

crit

= 0
using the results of the previous analysis, i.e.,

� log ⇢ = log
Pr(z

crit

|d, old)
Pr(z

crit

, old)

����
z
crit

=0

.

As there was little evidence to support the edge evidence in the earlier analysis, the ratio of posterior to prior
at z

crit

= 0 is typically ⇠ 10, and the new evidence ratios are boosted accordingly.

Posterior over the total 
number of observable 

collisions in a generic model

cosmic variance

Feeney, MCJ, McEwan, Mortlock, Peiris 

Osbourne, Senatore, Smith

(various assumptions in prior)



Closing Remarks

• In practice restrictions:

•  We are limited to a few snapshots on the light cone.
•  We are limited by our ability to understand non-linear 

evolution.

CMB polarization, LSS surveys, lensing, 21 cm, 
N-body codes, analytic handles on non-linear 

evolution

HUGE progress coming in the near future!!!!



Closing Remarks

• In principle restrictions:

•  Finite size past light cone.
•  Maximum wavelength.
•  Cosmic variance.

Raises some thorny questions:

If it can’t be observed in principle, is it real?

How large is the fundamental degeneracy between models?

Fundamental connection between early and late Universe?



Thank you!


