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1. Introduction

1. A beam splitter is an optical device which can generate
quantum entangled states. The beam splitter 50:50 allows to
split the incident intensity to equal reflected and transmitted
intensities.

2. Usual CS of the harmonic oscillator used as the input state do
not generate entanglement while the corresponding SCS do.

3. Entangled states have potential applications in quantum
cryptography and quantum teleportation.

4. Different CS are constructed as finite sum and infinite
superpositions of Fock states and the linear entropy is
computed.



2. Generalized squeezed coherent states and linear entropy
2.1. Construction of generalized squeezed coherent states

SCS can be constructed using different methods.
They are superposition of usual Fock states and may be
constructed as the solution of the eigenvalue equation

(A + γA†)Ψ(z , γ) = z Ψ(z , γ), z , γ ∈ C,

where z is the amplitude of coherence and γ the squeezing
parameter.
A† and A are f -deformed ladder operators defined as:

A|n〉 =
√
n f (n) |n − 1〉, A†|n〉 =

√
n + 1 f (n + 1) |n + 1〉,

where the set {|n〉, n = 0, 1, ...} represents the usual Fock states
and f (n) is a positive real function.
Relations with the usual ones a† and a are given as A† = f (N) a†

and A = af (N) where N is the usual photon number.



2. Generalized squeezed coherent states
2.1. Construction of generalized squeezed coherent states

For f (n) = 1, we call them usual SCS.
In the coherent case (γ = 0), they are the most semi-classical
quantum states. It is well-known that when they are used as input
states |ψ〉 in the beam splitter, the output |out〉 is a direct tensor
product of two such coherent states producing thus no
entanglement.
When γ 6= 0, the SCS still minimize the Heisenberg uncertainty
relation but the dispersions in the position and momentum
fluctuate. SCS (γ 6= 0) have shown to produce always
entanglement.
Deformed or generalized CS have been the object of many papers.
Fewer results have been obtained for SCS.



2. Generalized squeezed coherent states
2.1. Construction of generalized squeezed coherent states

SCS are explicitly given as a superposition of Fock states:

Ψ(z , γ) =
1√
N (z , γ)

M∑
n=0

Zf (n)(z , γ, n)
√
n!f (n)!

|n〉,

where f (n)! =
∏n

i=1 f (i), f (0)! = 1 and N (z , γ) is the
normalization factor.
The function Zf (n)(z , γ, n) satisfies (n = 1, 2, ...)

Zf (n)(z , γ, n+1)−zZf (n)(z , γ, n)+γ n (f (n))2Zf (n)(z , γ, n−1) = 0,

with Zf (n)(z , γ, 0) = 1 and Zf (n)(z , γ, 1) = z .
Note that M →∞.



2. Generalized squeezed coherent states
2.1. Construction of generalized squeezed coherent states

In the usual case ( f (n) = 1), we have:
for γ = 0, Zo(z , 0, n) = zn;
for γ 6= 0,

Zo(z , γ, n) =
(γ

2

) n
2H
(
n,

z√
2γ

)
,

where H(n,w) are the Hermite polynomials in a complex variable
w .
The states Ψ(z , γ) are normalizable for all z ∈ C and |γ| < 1.



2. Generalized squeezed coherent states
2.1. Construction of generalized squeezed coherent states

Now we take:
f (n) =

√
v + n, v ≥ 0.

We define J− = A, J+ = A†, J0 = N + 1
2(v + 1) ( N isthe usual

number operator) and we thus genrate a su(1, 1) algebra:

[J0, J±] = ±J±, [J−, J+] = 2J0.

Note: the special case where v = 0 has been studied in relation
with a nonlinear Jaynes-Cummings model known as the
Buck-Sukumar model in a kerr medium.



2. Generalized squeezed coherent states
2.2. Density probability, dispersion in position and momentum and uncertainty

Graph of |Ψ(z , 0)|2 (the harmonic oscillator CS) with
f0(n) = 1, f1(n) =

√
n, f2(n) =

√
20 + n and z = 1 :
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2. Generalized squeezed coherent states and linear entropy
2.2. Density probability, dispersion in position and momentum and uncertainty

With the position x and momentum p given as x = 1√
2

(a† + a)

and p = i 1√
2

(a† − a), we compute the following dispersions:

(∆x)2, (∆p)2 and ∆ = (∆x)2(∆p)2.
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2. Generalized squeezed coherent states and linear entropy
2.2. Density probability, dispersion in position and momentum and uncertainty
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3. Beam splitter and linear entropy
3.1. Beam splitting transformation

A beam splitter can be described by an unitary operator B̂(θ)
connecting the input state with the output one

|out〉 = B̂(θ) |in〉 = exp

[
θ

2
(a†be iφ − ab†e−iφ)

]
|in〉,

where the input state is given as

|in〉 = |ψ〉 ⊗ |0〉.

a†, a and b†, b independently act on the bipartite fields and satisfy
[a, a†] = [b, b†] = 1.
φ is the phase difference between the reflected and transmitted
fields (φ = 0 in our approach).
If |in = |n〉 ⊗ |0〉, a usual Fock state, we get (su(2) coherent state):

B̂(θ)
(
|n〉 ⊗ |0〉

)
=

n∑
q=0

(
n

q

) 1
2

T qR(n−q) |q〉 ⊗ |n − q〉.



3. Beam splitter and linear entropy
3.1. Beam splitting transformation

B̂(θ)
(
|n〉 ⊗ |0〉

)
=

n∑
q=0

(
n

q

) 1
2

T qR(n−q) |q〉 ⊗ |n − q〉.

Note that:

1. T and R are the transmissibility and reflectivity of the beam
splitter and |T |2 + |R|2 = 1;

2. T = cos(θ/2), R = −e−iφ sin(θ/2) with θ the angle of the
beam splitter ;

3. We use a symmetric 50:50 beam splitter ( θ = π/2). Some
comments for the non-symmetric case at the end of the talk.



3. Beam splitter and linear entropy
3.2. Linear entropy as a quantification of entanglement

Starting with the density operator ρab = |out〉〈out|, the linear
entropy S is defined as

S = 1− Tr(ρ2a),

where ρa is the reduced density operator of the system a obtained
by performing a partial trace over the system b of ρab.
S ∈ [0, 1[: 0 means non entanglement (case of a separable state)
and 1 would indicate a maximum of entanglement.
Note that the linear entropy is an upper born of the von Neumann
entropy.



3. Beam splitter and linear entropy
3.3. Generalized squeezed coherent states and linear entropy

If the input state is chosen such that |ψ〉 is a SCS , we get:

|out〉 = B̂(θ)
(
Ψ(z , γ)⊗ |0〉

)
=

1√
N

M∑
q=0

M−q∑
m=0

Zf (n)(z , γ,m + q)
√
q!m!f (m + q)!

T qRm|q〉 ⊗ |m〉.

The linear entropy takes the form (|T |2 = |R|2 = 1
2)

S = 1− 1

N 2

M∑
q=0

M∑
j=0

M−max(q,j)∑
m=0

M−max(q,j)∑
n=0

2−(q+j+m+n)

Zf (n)(m + q)Zf (n)(m + j)Zf (n)(n + j)Zf (n)(n + q)

q!j!m!n!f (m + q)!f (m + j)!f (n + j)!f (n + q)!
.

Note: we see that when M is finite, some of the sums must go
until M −max(q, j).



4. Measure of entanglement in the SCS
4.1. Generalized coherent states

When γ = 0, Zf (n)(z , γ, n) = zn for all f (n). We can write

Sγ=0(x ,M, f (n)) = 1− σ(x ,M, f (n))

N 2(x ,M, f (n))
.

with

σ(x ,M, f (n)) =
M∑
q=0

M∑
j=0

M−max(q,j)∑
m=0

M−max(q,j)∑
n=0

(x
2

)q+j+m+n

× 1

q!j!m!n!f (m + q)!f (m + j)!f (n + q)!f (n + j)!

and

N 2(x ,M, f (n)) =

(
M∑
n=0

xn

n!(f (n)!)2

)2

.



4. Measure of entanglement in the SCS
4.1. Generalized coherent states

For f (n) = 1 and γ = 0, the usual CS are such that
Sγ=0(x ,M, 1) = 0.
For the calculations, we take M finite. It means that the set of
values of x where Sγ=0 → 0 in these usual coherent states could
depend on M. This will give us a interval of allowed values of x
with respect to the choice of M .
For example, we have shown that for x ∈ [0, 1], it is enough to
take M = 10 in our calculations of M.



4. Measure of entanglement in the SCS
4.1. Generalized coherent states

Let us now compare with the other choices of f (n).

f0(n)=1

f2(n)= 20 + n

f1(n)= n
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Note that the axis of the graph is logarithmic. This better reflect
the different orders of magnitude of the linear entropy.



4. Measure of entanglement in the SCS
4.1. Generalized coherent states
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4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum

For the squeezed vacuum, we take z = 0. We get

Zf (n)(0, γ, n + 1) + γ n (f (n))2Zf (n)(0, γ, n − 1) = 0, n = 1, 2, ...

with Zf (n)(0, γ, 0) = 1 and Zf (n)(0, γ, 1) = 0. It gives

Zf (n)(0, γ, 2n) =
(2n)!

n!

n−1∏
i=0

(
f (2i + 1)

)2 (−γ
2

)n
,

Zf (n)(0, γ, 2n + 1) = 0.

For f (n) = 1, we know that the entanglement is increasing with
the values of γ (γ < 1 and is taken to be real for our calculations).



4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum

We compare the behavior of the linear entropy S for different
choices of f (n). It behaves differently than in the coherent states.
We chose to draw the graph in function of r (γ = tanh r).

f1(n)= n

f2(n)= 20 + n

f0(n)=1

0.5 1.0 1.5 2.0
r

0.1

0.2

0.3

0.4

0.5

S



4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum

The following figures describe the dispersions and localisation in x
for f0(n) = 1(red), f1(n) =

√
n(blue),f2(n) =

√
(20 + n)(red).
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4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum
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4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum
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4. Measure of entanglement in the SCS
4.2. Generalized squeezed vacuum
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4. Measure of entanglement in the SCS
4.3. Generalized squeezed coherent states

Finally, when our states depends on both z and γ, we get the
following figures (for γ = 0.7 (plain line), γ = 0.95 (dashed line))
for S .
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